ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluation of Beam Halo from Beam-Gas Scattering at the KEK-ATF

79   0   0.0 ( 0 )
 نشر من قبل Renjun Yang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In circular colliders, as well as in damping rings and synchrotron radiation light sources, beam halo is one of the critical issues limiting the performance as well as potentially causing component damage and activation. It is imperative to clearly understand the mechanisms that lead to halo formation and to test the available theoretical models. Elastic beam-gas scattering can drive particles to large oscillation amplitudes and be a potential source of beam halo. In this paper, numerical estimation and Monte Carlo simulations of this process at the ATF of KEK are presented. Experimental measurements of beam halo in the ATF2 beam line using a diamond sensor detector are also described, which clearly demonstrates the influence of the beam-gas scattering process on the transverse halo distribution.



قيم البحث

اقرأ أيضاً

110 - R. Yang , A. Aryshev , P. Bambade 2021
Beam halo is one of the crucial issues limiting the machine performance and causing radioactivation in high-intensity accelerators. A clear picture of beam-halo formation is of great importance for successful suppression of the undesired beam loss. W e present numerical and experimental studies of transverse and longitudinal halos in the KEK Accelerator Test Facility. The fair accordance between predictions and observations in various conditions indicates that the Touschek scattering is the dominant mechanism forming the horizontal and momentum halos.
120 - K.L.F. Bane 2001
At the Accelerator Test Facility (ATF) at KEK intrabeam scattering (IBS) is a strong effect for an electron machine. It is an effect that couples all dimensions of the beam, and in April 2000, over a short period of time, all dimensions were measured as functions of current. In this report we derive a simple relation for the growth rates of emittances due to IBS. We apply the theories of Bjorken-Mtingwa, Piwinski, and a formula due to Raubenheimer to the ATF parameters, and find that the results all agree (if in Piwinskis formalism we replace the dispersion squared over beta by the dispersion invariant). Finally, we compare theory, including the effect of potential well bunch lengthening, with the April 2000 measurements, and find reasonably good agreement in the energy spread and horizontal emittance dependence on current. The vertical emittance measurement, however, implies that either: there is error in the measurement (equivalent to an introduction of 0.6% x-y coupling error), or the effect of intrabeam scattering is stronger than predicted (35% stronger in growth rates).
Compton scattering provides one of the most promising scheme to obtain polarized positrons for the next generation of $e^-$ -- $e^+$ colliders. Moreover it is an attractive method to produce monochromatic high energy polarized gammas for nuclear appl ications and X-rays for compact light sources. In this framework a four-mirror Fabry-Perot cavity has been installed at the Accelerator Test Facility (ATF - KEK, Tsukuba, Japan) and is used to produce an intense flux of polarized gamma rays by Compton scattering cite{ipac-mightylaser}. For electrons at the ATF energy (1.28 GeV) Compton scattering may result in a shorter lifetime due to the limited bucket acceptance. We have implemented the effect of Compton scattering on a 2D tracking code with a Monte-Carlo method. This code has been used to study the longitudinal dynamics of the electron beam at the ATF damping ring, in particular the evolution of the energy spread and the bunch length under Compton scattering. The results obtained are presented and discussed. Possible methods to observe the effect of Compton scattering on the ATF beam are proposed.
62 - K. Bane , H. Hayano , K. Kubo 2000
In April 2000 the single bunch energy spread, bunch length, horizontal emittance, and vertical emittance were measured as functions of current in KEKs ATF damping ring. In this report the measurement results are analyzed in light of intrabeam scatter ing theory. The measurements are found to be relatively consistent with theory, although the measured effects appear to be stronger than theory. In addition, the factor of 3 growth in vertical emittance at a current of 3 mA does not seem to be supported.
293 - N. Eddy , C. Briegel , B. Fellenz 2012
A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resoluti on, high reproducibility read-out system, based on analog and processing, and also implements a new automatic gain error correction schema. The technical concept and realization as well as results of beam studies are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا