ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of the possible chiral edge mode in Bi1-xSbx

119   0   0.0 ( 0 )
 نشر من قبل Heon-Jung Kim
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

After the classification of topological states of matter has been clarified for non-interacting electron systems, the theoretical connection between gapless boundary modes and nontrivial bulk topological structures, and their evolutions as a function of dimensions are now well understood. However, such dimensional hierarchy has not been well established experimentally although some indirect evidences were reported, for example, such as the half-quantized Hall conductance via quantum Hall effect and extrapolation in the quantum-oscillation measurement. In this paper, we report the appearance of the possible chiral edge mode from the surface state of topological insulators under magnetic fields, confirming the dimensional hierarchy in three dimensional topological insulators. Applying laser pulses to the surface state of Bi1-xSbx, we find that the sign of voltage relaxation in one edge becomes opposite to that in the other edge only when magnetic fields are applied to the topological insulating phase. We show that this sign difference originates from the chirality of edge states, based on coupled time-dependent Poisson and Boltzmann equations.



قيم البحث

اقرأ أيضاً

140 - K. C. Lukas , G. Joshi , K. Modic 2012
The Seebeck coefficients, electrical resistivities, total thermal conductivities, and magnetization are reported for temperatures between 5 and 350 K for n-type Bi0.88Sb0.12 nano-composite alloys made by Ho-doping at the 0, 1 and 3% atomic levels. Th e alloys were prepared using a dc hot-pressing method, and are shown to be single phase for both Ho contents with grain sizes on the average of 900 nm. We find the parent compound has a maximum of ZT = 0.28 at 231 K, while doping 1% Ho increases the maximum ZT to 0.31 at 221 K and the 3% doped sample suppresses the maximum ZT = 0.24 at a temperature of 260 K.
The chiral anomaly is the predicted break down of chiral symmetry in a Weyl semimetal with monopoles of opposite chirality when an electric field parallel to a magnetic field is applied. It occurs because of charge pumping from a positive chirality t o a negative chirality monopole. Experimental observation of this fundamental effect has been plagued by concerns about the pathways of the current. Here, we unambiguously demonstrate the thermal analog of the chiral anomaly in topological insulator bismuth-antimony alloys driven into an ideal Weyl semimetal state by a Zeeman field, with the chemical potential pinned at the Weyl points, and in which the Fermi surface has no trivial pockets. The experimental signature is a large enhancement of the thermal conductivity in an applied magnetic field parallel to the thermal gradient that follows the Wiedemann-Franz law above 60 K. Absence of current flow avoids extrinsic effects that plague electrical measurements.
125 - S. Souma , K. Eto , M. Nomura 2011
We have performed angle-resolved photoemission spectroscopy on Pb(Bi1-xSbx)2Te4, which is a member of lead-based ternary tellurides and has been theoretically proposed as a candidate for a new class of three-dimensional topological insulators (TIs). In PbBi2Te4, we found a topological surface state with a hexagonally deformed Dirac-cone band dispersion, indicating that this material is a strong TI with a single topological surface state at the Brillouin-zone center. Partial replacement of Bi with Sb causes a marked change in the Dirac carrier concentration, leading to the sign change of Dirac carriers from n-type to p-type. The Pb(Bi1-xSbx)2Te4 system with tunable Dirac carriers thus provides a new platform for investigating exotic topological phenomena.
Using the superconducting proximity effect for engineering a topological superconducting state in a topological insulator (TI) is a promising route to realize Majorana fermions. However, epitaxial growth of a superconductor on the TI surface to achie ve a good proximity effect has been a challenge. We discovered that simply depositing Pd on thin films of the TI material (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$ leads to an epitaxial self-formation of PdTe$_2$ superconductor having the superconducting transition temperature of ~1 K. This self-formed superconductor proximitizes the TI, which is confirmed by the appearance of a supercurrent in Josephson-junction devices made on (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$. This self-epitaxy phenomenon can be conveniently used for fabricating TI-based superconducting nanodevices to address the superconducting proximity effect in TIs.
The chiral magnetic effect is the generation of electric current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions (massless spin $1/2$ particles with a definite projection of spin on momentum) -- a dramatic phenomenon arising from a collective motion of particles and antiparticles in the Dirac sea. The recent discovery of Dirac semimetals with chiral quasi-particles opens a fascinating possibility to study this phenomenon in condensed matter experiments. Here we report on the first observation of chiral magnetic effect through the measurement of magneto-transport in zirconium pentatelluride, ZrTe_5. Our angle-resolved photoemission spectroscopy experiments show that this materials electronic structure is consistent with a 3D Dirac semimetal. We observe a large negative magnetoresistance when magnetic field is parallel with the current. The measured quadratic field dependence of the magnetoconductance is a clear indication of the chiral magnetic effect. The observed phenomenon stems from the effective transmutation of Dirac semimetal into a Weyl semimetal induced by the parallel electric and magnetic fields that represent a topologically nontrivial gauge field background.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا