ترغب بنشر مسار تعليمي؟ اضغط هنا

Matrix Product States for Quantum Stochastic Modelling

346   0   0.0 ( 0 )
 نشر من قبل Chengran Yang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In stochastic modeling, there has been a significant effort towards finding predictive models that predict a stochastic process future using minimal information from its past. Meanwhile, in condensed matter physics, matrix product states (MPS) are known as a particularly efficient representation of 1D spin chains. In this Letter, we associate each stochastic process with a suitable quantum state of a spin chain. We then show that the optimal predictive model for the process leads directly to an MPS representation of the associated quantum state. Conversely, MPS methods offer a systematic construction of the best known quantum predictive models. This connection allows an improved method for computing the quantum memory needed for generating optimal predictions. We prove that this memory coincides with the entanglement of the associated spin chain across the past-future bipartition.



قيم البحث

اقرأ أيضاً

We study thermal states of strongly interacting quantum spin chains and prove that those can be represented in terms of convex combinations of matrix product states. Apart from revealing new features of the entanglement structure of Gibbs states our results provide a theoretical justification for the use of Whites algorithm of minimally entangled typical thermal states. Furthermore, we shed new light on time dependent matrix product state algorithms which yield hydrodynamical descriptions of the underlying dynamics.
We demonstrate that the optimal states in lossy quantum interferometry may be efficiently simulated using low rank matrix product states. We argue that this should be expected in all realistic quantum metrological protocols with uncorrelated noise an d is related to the elusive nature of the Heisenberg precision scaling in presence of decoherence.
196 - Yichen Huang 2021
In one-dimensional quantum systems with short-range interactions, a set of leading numerical methods is based on matrix product states, whose bond dimension determines the amount of computational resources required by these methods. We prove that a t hermal state at constant inverse temperature $beta$ has a matrix product representation with bond dimension $e^{tilde O(sqrt{betalog(1/epsilon)})}$ such that all local properties are approximated to accuracy $epsilon$. This justifies the common practice of using a constant bond dimension in the numerical simulation of thermal properties.
The theory of entanglement provides a fundamentally new language for describing interactions and correlations in many body systems. Its vocabulary consists of qubits and entangled pairs, and the syntax is provided by tensor networks. We review how ma trix product states and projected entangled pair states describe many-body wavefunctions in terms of local tensors. These tensors express how the entanglement is routed, act as a novel type of non-local order parameter, and we describe how their symmetries are reflections of the global entanglement patterns in the full system. We will discuss how tensor networks enable the construction of real-space renormalization group flows and fixed points, and examine the entanglement structure of states exhibiting topological quantum order. Finally, we provide a summary of the mathematical results of matrix product states and projected entangled pair states, highlighting the fundamental theorem of matrix product vectors and its applications.
191 - Zhongtao Mei , C. J. Bolech 2016
Using the algebraic Bethe ansatz, we derive a matrix product representation of the exact Bethe-ansatz states of the six-vertex Heisenberg chain (either XXX or XXZ and spin-$frac{1}{2}$) with open boundary conditions. In this representation, the compo nents of the Bethe eigenstates are expressed as traces of products of matrices which act on a tensor product of auxiliary spaces. As compared to the matrix product states of the same Heisenberg chain but with periodic boundary conditions, the dimension of the exact auxiliary matrices is enlarged as if the conserved number of spin-flips considered would have been doubled. This result is generic for any non-nested integrable model, as is clear from our derivation and we further show by providing an additional example of the same matrix product state construction for a well known model of a gas of interacting bosons. Counterintuitively, the matrices do not depend on the spatial coordinate despite the open boundaries and thus suggest generic ways of exploiting (emergent) translational invariance both for finite size and in the thermodynamic limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا