ترغب بنشر مسار تعليمي؟ اضغط هنا

A polynomial Ansatz for Norm-conserving Pseudopotentials

158   0   0.0 ( 0 )
 نشر من قبل Martin Kiffner
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that efficient norm-conserving pseudopotentials for electronic structure calculations can be obtained from a polynomial Ansatz for the potential. Our pseudopotential is a polynomial of degree ten in the radial variable and fulfills the same smoothness conditions imposed by the Troullier-Martins method [Phys. Rev. B 43, 1993 (1991)] where pseudopotentials are represented by a polynomial of degree twenty-two. We compare our method to the Troullier-Martins approach in electronic structure calculations for diamond and iron in the bcc structure and find that the two methods perform equally well in calculations of the total energy. However, first and second derivatives of the total energy with respect to atomic coordinates converge significantly faster with the plane wave cutoff if the standard Troullier-Martins potentials are replaced by the pseudopotentials introduced here.



قيم البحث

اقرأ أيضاً

117 - D. R. Hamann 2013
Fully-nonlocal two-projector norm-conserving pseudopotentials are shown to be compatible with a systematic approach to the optimization of convergence with the size of the plane-wave basis. A new formulation of the optimization is developed, includin g the ability to apply it to positive-energy atomic scattering states, and to enforce greater continuity in the pseudopotential. The generalization of norm-conservation to multiple projectors is reviewed and recast for the present purposes. Comparisons among the results of all-electron and one- and two-projector norm-conserving pseudopotential calculations of lattice constants and bulk moduli are made for a group of solids chosen to represent a variety of types of bonding and a sampling of the periodic table.
242 - W. A. Al-Saidi , E. J. Walter , 2007
We report Hartree-Fock (HF) based pseudopotentials suitable for plane-wave calculations. Unlike typical effective core potentials, the present pseudopotentials are finite at the origin and exhibit rapid convergence in a plane-wave basis; the optimize d pseudopotential method [A. M. Rappe et. al, Phys. Rev. B 41 1227--30 (1990)] improves plane-wave convergence. Norm-conserving HF pseudopotentials are found to develop long-range non-Coulombic behavior which does not decay faster than 1/r, and is non-local. This behavior, which stems from the nonlocality of the exchange potential, is remedied using a recently developed self-consistent procedure [J. R. Trail and R. J. Needs, J. Chem. Phys. 122, 014112 (2005)]. The resulting pseudopotentials slightly violate the norm conservation of the core charge. We calculated several atomic properties using these pseudopotentials, and the results are in good agreement with all-electron HF values. The dissociation energies, equilibrium bond lengths, and frequency of vibrations of several dimers obtained with these HF pseudopotentials and plane waves are also in good agreement with all-electron results.
128 - A. Badinski , R. J. Needs 2008
We report exact expressions for atomic forces in the diffusion Monte Carlo (DMC) method when using nonlocal pseudopotentials. We present approximate schemes for estimating these expressions in both mixed and pure DMC calculations, including the pseud opotential Pulay term which has not previously been calculated and the Pulay nodal term which has not been calculated for real systems in pure DMC simulations. Harmonic vibrational frequencies and equilibrium bond lengths are derived from the DMC forces and compared with those obtained from DMC potential energy curves. Results for four small molecules show that the equilibrium bond lengths obtained from our best force and energy calculations differ by less than 0.002 Angstrom.
First-principles calculations in crystalline structures are often performed with a planewave basis set. To make the number of basis functions tractable two approximations are usually introduced: core electrons are frozen and the diverging Coulomb pot ential near the nucleus is replaced by a smoother expression. The norm-conserving pseudopotential was the first successful method to apply these approximations in a fully ab initio way. Later on, more efficient and more exact approaches were developed based on the ultrasoft and the projector augmented wave formalisms. These formalisms are however more complex and developing new features in these frameworks is usually more difficult than in the norm-conserving framework. Most of the existing tables of norm- conserving pseudopotentials, generated long ago, do not include the latest developments, are not systematically tested or are not designed primarily for high accuracy. In this paper, we present our PseudoDojo framework for developing and testing full tables of pseudopotentials, and demonstrate it with a new table generated with the ONCVPSP approach. The PseudoDojo is an open source project, building on the AbiPy package, for developing and systematically testing pseudopotentials. At present it contains 7 different batteries of tests executed with ABINIT, which are performed as a function of the energy cutoff. The results of these tests are then used to provide hints for the energy cutoff for actual production calculations. Our final set contains 141 pseudopotentials split into a standard and a stringent accuracy table. In total around 70.000 calculations were performed to test the pseudopotentials. The process of developing the final table led to new insights into the effects of both the core-valence partitioning and the non-linear core corrections on the stability, convergence, and transferability of norm-conserving pseudopotentials. ...
We present an optimization algorithm to construct pseudopotentials and use it to generate a set of Optimized Norm-Conserving Vanderbilt (ONCV) pseudopotentials for elements up to Z=83 (Bi) (excluding Lanthanides). We introduce a quality function that assesses the agreement of a pseudopotential calculation with all-electron FLAPW results, and the necessary plane-wave energy cutoff. This quality function allows us to use a Nelder-Mead optimization algorithm on a training set of materials to optimize the input parameters of the pseudopotential construction for most of the periodic table. We control the accuracy of the resulting pseudopotentials on a test set of materials independent of the training set. We find that the automatically constructed pseudopotentials provide a good agreement with the all-electron results obtained using the FLEUR code with a plane-wave energy cutoff of approximately 60 Ry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا