ﻻ يوجد ملخص باللغة العربية
The Turing patterning mechanism is believed to underly the formation of repetitive structures in development, such as zebrafish stripes and mammalian digits, but it has proved difficult to isolate the specific biochemical species responsible for pattern formation. Meanwhile, synthetic biologists have designed Turing systems for implementation in cell colonies, but none have yet led to visible patterns in the laboratory. In both cases, the relationship between underlying chemistry and emergent biology remains mysterious. To help resolve the mystery, this article asks the question: what kinds of biochemical systems can generate Turing patterns? We find general conditions for Turing pattern inception -- the ability to generate unstable patterns from random noise -- which may lead to the ultimate formation of stable patterns, depending on biochemical non-linearities. We find that a wide variety of systems can generate stable Turing patterns, including several which are currently unknown, such as two-species systems composed of two self-activators, and systems composed of a short-range inhibitor and a long-range activator. We furthermore find that systems which are widely believed to generate stable patterns may in fact only generate unstable patterns, which ultimately converge to spatially-homogeneous concentrations. Our results suggest that a much wider variety of systems than is commonly believed could be responsible for observed patterns in development, or could be good candidates for synthetic patterning networks.
An understanding of the underlying mechanism of side--branching is paramount in controlling and/or therapeutically treating mammalian organs, such as lungs, kidneys, and glands. Motivated by an activator-inhibitor-substrate approach that is conjectur
A theory for diffusivity estimation for spatially extended activator-inhibitor dynamics modelling the evolution of intracellular signaling networks is developed in the mathematical framework of stochastic reaction-diffusion systems. In order to accou
Although accumulation of molecular damage is suggested to be an important molecular mechanism of aging, a quantitative link between the dynamics of damage accumulation and mortality of species has so far remained elusive. To address this question, we
Excitable pulses are among the most widespread dynamical patterns that occur in many different systems, ranging from biological cells to chemical reactions and ecological populations. Traditionally, the mutual annihilation of two colliding pulses is
Cancer is increasingly perceived as a systems-level, network phenomenon. The major trend of malignant transformation can be described as a two-phase process, where an initial increase of network plasticity is followed by a decrease of plasticity at l