ﻻ يوجد ملخص باللغة العربية
In this paper, we study the system identification problem for sparse linear time-invariant systems. We propose a sparsity promoting block-regularized estimator to identify the dynamics of the system with only a limited number of input-state data samples. We characterize the properties of this estimator under high-dimensional scaling, where the growth rate of the system dimension is comparable to or even faster than that of the number of available sample trajectories. In particular, using contemporary results on high-dimensional statistics, we show that the proposed estimator results in a small element-wise error, provided that the number of sample trajectories is above a threshold. This threshold depends polynomially on the size of each block and the number of nonzero elements at different rows of input and state matrices, but only logarithmically on the system dimension. A by-product of this result is that the number of sample trajectories required for sparse system identification is significantly smaller than the dimension of the system. Furthermore, we show that, unlike the recently celebrated least-squares estimators for system identification problems, the method developed in this work is capable of textit{exact recovery} of the underlying sparsity structure of the system with the aforementioned number of data samples. Extensive case studies on synthetically generated systems, physical mass-spring networks, and multi-agent systems are offered to demonstrate the effectiveness of the proposed method.
The goal of predictive sparse coding is to learn a representation of examples as sparse linear combinations of elements from a dictionary, such that a learned hypothesis linear in the new representation performs well on a predictive task. Predictive
The hidden subgroup problem ($mathsf{HSP}$) has been attracting much attention in quantum computing, since several well-known quantum algorithms including Shor algorithm can be described in a uniform framework as quantum methods to address different
In this short paper, we aim at developing algorithms for sparse Volterra system identification when the system to be identified has infinite impulse response. Assuming that the impulse response is represented as a sum of exponentials and given input-
This paper addresses the problem of identifying sparse linear time-invariant (LTI) systems from a single sample trajectory generated by the system dynamics. We introduce a Lasso-like estimator for the parameters of the system, taking into account the
We consider the distinct elements problem, where the goal is to estimate the number of distinct colors in an urn containing $ k $ balls based on $n$ samples drawn with replacements. Based on discrete polynomial approximation and interpolation, we pro