ﻻ يوجد ملخص باللغة العربية
The solutions for the Tolmann-Oppenheimer-Volkoff (TOV) equation bring valuable informations about the macroscopical features of compact astrophysical objects as neutron stars. They are sensitive to both the equation of state considered for nuclear matter and the background gravitational theory. In this work we construct the TOV equation for a conservative version of the $f(R,T)$ gravity. While the non-vanishing of the covariant derivative of the $f(R,T)$ energy-momentum tensor yields, in a cosmological perspective, the prediction of creation of matter throughout the universe evolution as shown by T. Harko, in the analysis of the hydrostatic equilibrium of compact astrophysical objects, this property still lacks a convincing physical explanation. The imposition of $ abla^{mu}T_{mu u}=0$ demands a particular form for the function $h(T)$ in $f(R,T)=R+h(T)$, which is here derived. Therefore, the choice of a specific equation of state for the star matter demands a unique form of $h(T)$, manifesting a strong connection between conserved $f(R,T)$ gravity and the star matter constitution. We construct and solve the TOV equation for the general equation of state for $p=krho^{Gamma}$, with $k$ being the EoS parameter, $rho$ {it the energy density} and $Gamma$ is the adiabatic index. We also derive the macroscopical properties of neutron stars ($Gamma=5/3$) within this approach.
For the accurate understanding of compact objects such as neutron stars and strange stars, the Tolmann-Openheimer-Volkof (TOV) equation has proved to be of great use. Hence, in this work, we obtain the TOV equation for the energy-momentum-conserved $
In $f(R)$ gravity and Brans-Dicke theory with scalar potentials, we study the structure of neutron stars on a spherically symmetric and static background for two equations of state: SLy and FPS. In massless BD theory, the presence of a scalar couplin
Deviations from the predictions of general relativity due to energy-momentum squared gravity (EMSG) are expected to become pronounced in the high density cores of neutron stars. We derive the hydrostatic equilibrium equations in EMSG and solve them n
In this article we try to present spherically symmetric isotropic strange star model under the framework of $f(R,mathcal{T})$ theory of gravity. To this end, we consider that the Lagrangian density is an arbitrary linear function of the Ricci scalar
In this paper, we study the stellar structure in terms of alternative theory of gravity specially by f (R;T) gravity theory. Here, we consider the function f (R;T) = R+2VT where R is the Ricci scalar, T is the stress-energy momentum and V is the coup