ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar Population Properties of Ultracompact Dwarfs in M87: a Mass-metallicity Correlation Connecting Low-metallicity Globular Clusters and Compact Ellipticals

242   0   0.0 ( 0 )
 نشر من قبل Hong-Xin Zhang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive stellar population parameters for a representative sample of ultracompact dwarfs (UCDs) and a large sample of massive globular clusters (GCs) with stellar masses $gtrsim$ 10$^{6}$ $M_{odot}$ in the central galaxy M87 of the Virgo galaxy cluster, based on model fitting to the Lick-index measurements from both the literature and new observations. After necessary spectral stacking of the relatively faint objects in our initial sample of 40 UCDs and 118 GCs, we obtain 30 sets of Lick-index measurements for UCDs and 80 for GCs. The M87 UCDs have ages $gtrsim$ 8 Gyr and [$alpha$/Fe] $simeq$ 0.4 dex, in agreement with previous studies based on smaller samples. The literature UCDs, located in lower-density environments than M87, extend to younger ages and smaller [$alpha$/Fe] (at given metallicities) than M87 UCDs, resembling the environmental dependence of the Virgo dE nuclei. The UCDs exhibit a positive mass-metallicity relation (MZR), which flattens and connects compact ellipticals at stellar masses $gtrsim$ 10$^{8}$ $M_{odot}$. The Virgo dE nuclei largely follow the average MZR of UCDs, whereas most of the M87 GCs are offset towards higher metallicities for given stellar masses. The difference between the mass-metallicity distributions of UCDs and GCs may be qualitatively understood as a result of their different physical sizes at birth in a self-enrichment scenario or of galactic nuclear cluster star formation efficiency being relatively low in a tidal stripping scenario for UCD formation. The existing observations provide the necessary but not sufficient evidence for tidally stripped dE nuclei being the dominant contributors to the M87 UCDs.



قيم البحث

اقرأ أيضاً

124 - Joel C. Roediger 2013
We present an extenstive literature compilation of age, metallicity, and chemical abundance pattern information for the 41 Galactic globular clusters (GGCs) studied by Schiavon et al. (2005). Our compilation constitutes a notable improvement over pre vious similar work, particularly in terms of chemical abundances. Its primary purpose is to enable detailed evaluations of and refinements to stellar population synthesis models designed to recover the above information for unresolved stellar systems based on their integrated spectra. However, since the Schiavon sample spans a wide range of the known GGC parameter space, our compilation may also benefit investigations related to a variety of astrophysical endeavours, such as the early formation of the Milky Way, the chemical evolution of GGCs, and stellar evolution and nucleosynthesis. For instance, we confirm with our compiled data that the GGC system has a bimodal metallicity distribution and is uniformly enhanced in the alpha-elements. When paired with the ages of our clusters, we find evidence that supports a scenario whereby the Milky Way obtained its globular clusters through two channels, in situ formation and accretion of satellite galaxies. The distributions of C, N, O, and Na abundances and the dispersions thereof per cluster corroborate the known fact that all GGCs studied so far with respect to multiple stellar populations have been found to harbour them. Finally, using data on individual stars, we also confirm that the atmospheres of stars become progressively polluted by CN(O)-processed material after they leave the main sequence and uncover evidence which suggests the alpha-elements Mg and Ca may originate from more than one nucleosynthetic production site. [abridged]
The origin of ultra-compact dwarfs (UCDs)--objects larger and more massive than typical globular clusters (GCs), but more compact than typical dwarf galaxies--has been hotly debated in the 15 years since their discovery. Even whether UCDs should be c onsidered galactic in origin, or simply the most extreme GCs, is not yet settled. We present the dynamical properties of 97 spectroscopically confirmed UCDs (rh >~10 pc) and 911 GCs associated with central cD galaxy of the Virgo cluster, M87. Our UCDs, of which 89% have M_star > ~2X10^6 M_sun and 92% are as blue as the classic blue GCs, nearly triple the sample of previous confirmed Virgo UCDs, providing by far the best opportunity for studying the global dynamics of a UCD system. We found that (1) UCDs have a surface number density profile that is shallower than that of the blue GCs in the inner ~ 70 kpc and as steep as that of the red GCs at larger radii; (2) UCDs exhibit a significantly stronger rotation than the GCs, and the blue GCs seem to have a velocity field that is more consistent with that of the surrounding dwarf ellipticals than with that of UCDs; (3) UCDs have a radially increasing orbital anisotropy profile, and are tangentially-biased at radii < ~ 40 kpc and radially-biased further out. In contrast, the blue GCs become more tangentially-biased at larger radii beyond ~ 40 kpc; (4) GCs with M_star > 2X10^6 M_sun have rotational properties indistinguishable from the less massive ones, suggesting that it is the size, instead of mass, that differentiates UCDs from GCs as kinematically distinct populations. We conclude that most UCDs in M87 are not consistent with being merely the most luminous and extended examples of otherwise normal GCs. The radially-biased orbital structure of UCDs at large radii is in general agreement with the tidally threshed dwarf galaxy scenario.
We present Gemini griz photometry for 521 globular cluster (GC) candidates in a 5.5 x 5.5 arcmin field centered 3.8 arcmin to the south and 0.9 arcmin to the west of the center of the giant elliptical galaxy NGC 4486. All these objects have previousl y published (C-T1) photometry. We also present new (C-T1) photometry for 338 globulars, within 1.7 arcmin in galactocentric radius, which have (g-z) colors in the photometric system adopted by the Virgo Cluster Survey of the Advanced Camera for Surveys of the Hubble Space Telescope. These photometric data are used to define a self-consistent multicolor grid (avoiding polynomial fits) and preliminary calibrated in terms of two chemical abundance scales. The resulting multicolor color-chemical abundance relations are used to test GC chemical abundance distributions. This is accomplished by modelling the ten GC color histograms that can be defined in terms of the Cgriz bands. Our results suggest that the best fit to the GC observed color histograms is consistent with a genuinely bimodal chemical abundance distribution NGC(Z). On the other side, each (blue and red) GC subpopulation follows a distinct color-color relation.
298 - Luciana Federici 2012
Thanks to the outstanding capabilites of the HST, our current knowledge about the M31 globular clusters (GCs) is similar to our knowledge of the Milky Way GCs in the 1960s-1970s, which set the basis for studying the halo and galaxy formation using th ese objects as tracers, and established their importance in defining the cosmic distance scale. We intend to derive a new calibration of the M_V(HB)-[Fe/H] relation by exploiting the large photometric database of old GCs in M31 in the HST archive. We collected the BVI data for 48 old GCs in M31 and analysed them by applying the same methods and procedures to all objects. We obtained a set of homogeneous colour-magnitude diagrams (CMDs) that were best-fitted with the fiducial CMD ridge lines of selected Milky Way template GCs. Reddening, metallicity, Horizontal Branch (HB) luminosity and distance were determined self-consistently for each cluster. There are three main results of this study: i) the relation M_V(HB)=(0.25+/-0.02)[Fe/H]+(0.89+/-0.03), which is obtained from the above parameters and is calibrated on the distances of the template Galactic GCs; ii) the distance modulus to M31 of (m-M)_0=24.42+/-0.06 mag, obtained by normalising this relation at the reference value of [Fe/H]=-1.5 to a similar relation using V_0(HB). This is the first determination of the distance to M31 based on the characteristics of its GC system which is calibrated on Galactic GCs; iii) the distance to the Large Magellanic Cloud (LMC), which is estimated to be 18.54+/-0.07 mag as a consequence of the previous results. These values agree excellently with the most recent estimate based on HST parallaxes of Galactic Cepheid and RR Lyrae stars, as well as with recent methods.
Using the Keck Cosmic Web Imager we obtain spectra of several globular clusters (GCs), ultra compact dwarfs (UCDs) and the inner halo starlight of M87, at a similar projected galactocentric radius of $sim$5 kpc. This enables us, for the first time, t o apply the same stellar population analysis to the GCs, UCDs and starlight consistently to derive ages, metallicities and alpha-element abundances in M87. We find evidence for a dual stellar population in the M87 halo light, i.e an $sim$80% component by mass which is old and metal-rich and a $sim$20% component which is old but metal-poor. Two red GCs share similar stellar populations to the halo light suggesting they may have formed contemporaneously with the dominant halo component. Three UCDs, and one blue GC, have similar stellar populations, with younger mean ages, lower metallicities and near solar alpha-element abundances. Combined with literature data, our findings are consistent with the scenario that UCDs are the remnant nucleus of a stripped galaxy. We further investigate the discrepancy in the literature for M87s kinematics at large radii, favouring a declining velocity dispersion profile. This work has highlighted the need for more self-consistent studies of galaxy halos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا