ﻻ يوجد ملخص باللغة العربية
A cylindrical GEM tracker is under construction in order to replace and improve the inner tracking system of the BESIII experiment. Tests with planar chamber prototypes were carried out on the H4 beam line of SPS (CERN) with muons of 150 GeV/c momentum, to evaluate the efficiency and resolution under different working conditions. The obtained efficiency was in the 96 - 98% range. Two complementary algorithms for the position determination were developed: the charge centroid and the micro-TPC methods. With the former, resolutions <100 micron and <200 micron were achieved without and with magnetic field, respectively. The micro-TPC improved these results. By the end of 2016, the first cylindrical prototype was tested on the same beam line. It showed optimal stability under different settings. The comparison of its performance with respect to the planar chambers is ongoing. Here, the results of the planar prototype tests will be addressed.
A cylindrical GEM detector is under development, to serve as an upgraded inner tracker at the BESIII spectrometer. It will consist of three layers of cylindrically-shaped triple GEMs surrounding the interaction point. The experiment is taking data at
The Cylindrical GEM-Inner Tracker (CGEM-IT) is the upgrade of the internal tracking system of the BESIII experiment. It consists of three layers of cylindrically-shaped triple GEMs, with important innovations with respect to the existing GEM detector
Gas detector are very light instrument used in high energy physics to measure the particle properties: position and momentum. Through high electric field is possible to use the Gas Electron Multiplier (GEM) technology to detect the charged particles
The Beijing Electron Spectrometer III (BESIII) is a multipurpose detector that collects data provided by the collision in the Beijing Electron Positron Collider II (BEPCII), hosted at the Institute of High Energy Physics of Beijing. Since the beginni
The CMS GEM collaboration is considering Gas Electron Multipliers (GEMs) for upgrading the CMS forward muon system in the 1.5<|eta|<2.4 endcap region. GEM detectors can provide precision tracking and fast trigger information. They would improve the C