ﻻ يوجد ملخص باللغة العربية
Topological insulators are exotic material that possess conducting surface states protected by the topology of the system. They can be classified in terms of their properties under discrete symmetries and are characterized by topological invariants. The latter has been measured experimentally for several models in one, two and three dimensions in both condensed matter and quantum simulation platforms. The recent progress in quantum simulation opens the road to the simulation of higher dimensional Hamiltonians and in particular of the 4D quantum Hall effect. These systems are characterized by the second Chern number, a topological invariant that appears in the quantization of the transverse conductivity for the non-linear response to both external magnetic and electric fields. This quantity cannot always be computed analytically and there is therefore a need of an algorithm to compute it numerically. In this work, we propose an efficient algorithm to compute the second Chern number in 4D systems. We construct the algorithm with the help of lattice gauge theory and discuss the convergence to the continuous gauge theory. We benchmark the algorithm on several relevant models, including the 4D Dirac Hamiltonian and the 4D quantum Hall effect and verify numerically its rapid convergence.
Topology ultimately unveils the roots of the perfect quantization observed in complex systems. The 2D quantum Hall effect is the celebrated archetype. Remarkably, topology can manifest itself even in higher-dimensional spaces in which control paramet
We introduce a scheme by which flat bands with higher Chern number $vert Cvert>1$ can be designed in ultracold gases through a coherent manipulation of Bloch bands. Inspired by quantum-optics methods, our approach consists in creating a dark Bloch ba
Weyl fermions are massless chiral particles first predicted in 1929 and once thought to describe neutrinos. Although never observed as elementary particles, quasiparticles with Weyl dispersion have recently been experimentally discovered in solid-sta
Using the discrete Gross-Pitaevskii equation on a three-dimensional cubic lattice, we numerically investigate energy quench dynamics in the vicinity of the continuous U(1) ordering transition. The post-quench relaxation is accompanied by a transient
We introduce a versatile and practical framework for applying matrix product state techniques to continuous quantum systems. We divide space into multiple segments and generate continuous basis functions for the many-body state in each segment. By co