ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthesis of Logical Clifford Operators via Symplectic Geometry

520   0   0.0 ( 0 )
 نشر من قبل Narayanan Rengaswamy
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum error-correcting codes can be used to protect qubits involved in quantum computation. This requires that logical operators acting on protected qubits be translated to physical operators (circuits) acting on physical quantum states. We propose a mathematical framework for synthesizing physical circuits that implement logical Clifford operators for stabilizer codes. Circuit synthesis is enabled by representing the desired physical Clifford operator in $mathbb{C}^{N times N}$ as a partial $2m times 2m$ binary symplectic matrix, where $N = 2^m$. We state and prove two theorems that use symplectic transvections to efficiently enumerate all symplectic matrices that satisfy a system of linear equations. As an important corollary of these results, we prove that for an $[![ m,m-k ]!]$ stabilizer code every logical Clifford operator has $2^{k(k+1)/2}$ symplectic solutions. The desired physical circuits are then obtained by decomposing each solution as a product of elementary symplectic matrices. Our assembly of the possible physical realizations enables optimization over them with respect to a suitable metric. Furthermore, we show that any circuit that normalizes the stabilizer of the code can be transformed into a circuit that centralizes the stabilizer, while realizing the same logical operation. Our method of circuit synthesis can be applied to any stabilizer code, and this paper provides a proof of concept synthesis of universal Clifford gates for the $[![ 6,4,2 ]!]$ CSS code. We conclude with a classical coding-theoretic perspective for constructing logical Pauli operators for CSS codes. Since our circuit synthesis algorithm builds on the logical Pauli operators for the code, this paper provides a complete framework for constructing all logical Clifford operators for CSS codes. Programs implementing our algorithms can be found at https://github.com/nrenga/symplectic-arxiv18a



قيم البحث

اقرأ أيضاً

Quantum error-correcting codes are used to protect qubits involved in quantum computation. This process requires logical operators, acting on protected qubits, to be translated into physical operators (circuits) acting on physical quantum states. We propose a mathematical framework for synthesizing physical circuits that implement logical Clifford operators for stabilizer codes. Circuit synthesis is enabled by representing the desired physical Clifford operator in $mathbb{C}^{N times N}$ as a partial $2m times 2m$ binary symplectic matrix, where $N = 2^m$. We state and prove two theorems that use symplectic transvections to efficiently enumerate all binary symplectic matrices that satisfy a system of linear equations. As a corollary of these results, we prove that for an $[![ m,k ]!]$ stabilizer code every logical Clifford operator has $2^{r(r+1)/2}$ symplectic solutions, where $r = m-k$, up to stabilizer degeneracy. The desired physical circuits are then obtained by decomposing each solution into a product of elementary symplectic matrices, that correspond to elementary circuits. This enumeration of all physical realizations enables optimization over the ensemble with respect to a suitable metric. Furthermore, we show that any circuit that normalizes the stabilizer of the code can be transformed into a circuit that centralizes the stabilizer, while realizing the same logical operation. Our method of circuit synthesis can be applied to any stabilizer code, and this paper discusses a proof of concept synthesis for the $[![ 6,4,2 ]!]$ CSS code. Programs implementing the algorithms in this paper, which includes routines to solve for binary symplectic solutions of general linear systems and our overall LCS (logical circuit synthesis) algorithm, can be found at: https://github.com/nrenga/symplectic-arxiv18a
In this article, we describe various aspects of categorification of the structures appearing in information theory. These aspects include probabilistic models both of classical and quantum physics, emergence of F-manifolds, and motivic enrichments.
Information delivery using chemical molecules is an integral part of biology at multiple distance scales and has attracted recent interest in bioengineering and communication theory. Potential applications include cooperative networks with a large nu mber of simple devices that could be randomly located (e.g., due to mobility). This paper presents the first tractable analytical model for the collective signal strength due to randomly-placed transmitters in a three-dimensional (3D) large-scale molecular communication system, either with or without degradation in the propagation environment. Transmitter locations in an unbounded and homogeneous fluid are modelled as a homogeneous Poisson point process. By applying stochastic geometry, analytical expressions are derived for the expected number of molecules absorbed by a fully-absorbing receiver or observed by a passive receiver. The bit error probability is derived under ON/OFF keying and either a constant or adaptive decision threshold. Results reveal that the combined signal strength increases proportionately with the transmitter density, and the minimum bit error probability can be improved by introducing molecule degradation. Furthermore, the analysis of the system can be generalized to other receiver designs and other performance characteristics in large-scale molecular communication systems.
Effective complexity measures the information content of the regularities of an object. It has been introduced by M. Gell-Mann and S. Lloyd to avoid some of the disadvantages of Kolmogorov complexity, also known as algorithmic information content. In this paper, we give a precise formal definition of effective complexity and rigorous proofs of its basic properties. In particular, we show that incompressible binary strings are effectively simple, and we prove the existence of strings that have effective complexity close to their lengths. Furthermore, we show that effective complexity is related to Bennetts logical depth: If the effective complexity of a string $x$ exceeds a certain explicit threshold then that string must have astronomically large depth; otherwise, the depth can be arbitrarily small.
Technology of data collection and information transmission is based on various mathematical models of encoding. The words Geometry of information refer to such models, whereas the words Moufang patterns refer to various sophisticated symmetries appea ring naturally in such models. In this paper we show that the symmetries of spaces of probability distributions, endowed with their canonical Riemannian metric of information geometry, have the structure of a commutative Moufang loop. We also show that the F-manifold structure on the space of probability distribution can be described in terms of differential 3-webs and Malcev algebras. We then present a new construction of (noncommutative) Moufang loops associated to almost-symplectic structures over finite fields, and use then to construct a new class of code loops with associated quantum error-correcting codes and networks of perfect tensors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا