ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring fluorescence into a nanofiber by observing field quadrature noise

79   0   0.0 ( 0 )
 نشر من قبل Alexander I. Lvovsky
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform balanced homodyne detection of the electromagnetic field in a single-mode tapered optical nanofiber surrounded by rubidium atoms in a magneto-optical trap. Resonant fluorescence of atoms into the nanofiber mode manifests itself as increased quantum noise of the field quadratures. The autocorrelation function of the homodyne detectors output photocurrent exhibits exponential fall-off with a decay time constant of $26.3pm 0.6$ ns, which is consistent with the theoretical expectation under our experimental conditions. To our knowledge, this is the first experiment in which fluorescence has been observed and measured by balanced optical homodyne detection.



قيم البحث

اقرأ أيضاً

An electromagnetic field quadrature measurement, performed on one of the modes of the nonlocal single-photon state $a|1,0>-b|0,1>$, collapses it into a superposition of the single-photon and vacuum states in the other mode. We use this effect to impl ement remote preparation of arbitrary single-mode photonic qubits conditioned on observation of a preselected quadrature value. The quantum efficiency of the prepared qubit can be higher than that of the initial single photon.
A qubit can relax by fluorescence, which prompts the release of a photon into its electromagnetic environment. By counting the emitted photons, discrete quantum jumps of the qubit state can be observed. The succession of states occupied by the qubit in a single experiment, its quantum trajectory, depends in fact on the kind of detector. How are the quantum trajectories modified if one measures continuously the amplitude of the fluorescence field instead? Using a superconducting parametric amplifier, we have performed heterodyne detection of the fluorescence of a superconducting qubit. For each realization of the measurement record, we can reconstruct a different quantum trajectory for the qubit. The observed evolution obeys quantum state diffusion, which is characteristic of quantum measurements subject to zero point fluctuations. Independent projective measurements of the qubit at various times provide a quantitative validation of the reconstructed trajectories. By exploring the statistics of quantum trajectories, we demonstrate that the qubit states span a deterministic surface in the Bloch sphere at each time in the evolution. Additionally, we show that when monitoring fluorescence, coherent superpositions are generated during the decay from excited to ground state. Counterintuitively, measuring light emitted during relaxation can give rise to trajectories with increased excitation probability.
We report the experimental realization of an optical trap that localizes single Cs atoms ~215 nm from surface of a dielectric nanofiber. By operating at magic wavelengths for pairs of counter-propagating red- and blue-detuned trapping beams, differen tial scalar light shifts are eliminated, and vector shifts are suppressed by ~250. We thereby measure an absorption linewidth Gamma/2pi = 5.7 pm 0.1 MHz for the Cs 6S1/2,F=4 - 6P3/2,F=5 transition, where Gamma/2pi = 5.2 MHz in free space. Optical depth d~66 is observed, corresponding to an optical depth per atom d_1~0.08. These advances provide an important capability for the implementation of functional quantum optical networks and precision atomic spectroscopy near dielectric surfaces.
We analyze the temporal response of the fluorescence light that is emitted from a dense gas of cold atoms driven by a laser. When the average interatomic distance is smaller than the wavelength of the photons scattered by the atoms, the system exhibi ts strong dipolar interactions and collective dissipation. We solve the exact dynamics of small systems with different geometries and show how these collective features are manifest in the scattered light properties such as the photon emission rate, the power spectrum and the second-order correlation function. By calculating these quantities beyond the weak driving limit, we make progress in understanding the signatures of collective behavior in these many-body systems. Furthermore, we clarify the role of disorder on the resonance fluorescence, of direct relevance for recent experimental efforts that aim at the exploration of many-body effects in dipole-dipole interacting gases of atoms.
We demonstrate optical transport of cold cesium atoms over millimeter-scale distances along an optical nanofiber. The atoms are trapped in a one-dimensional optical lattice formed by a two-color evanescent field surrounding the nanofiber, far red- an d blue-detuned with respect to the atomic transition. The blue-detuned field is a propagating nanofiber-guided mode while the red-detuned field is a standing-wave mode which leads to the periodic axial confinement of the atoms. Here, this standing wave is used for transporting the atoms along the nanofiber by mutually detuning the two counter-propagating fields which form the standing wave. The performance and limitations of the nanofiber-based transport are evaluated and possible applications are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا