ﻻ يوجد ملخص باللغة العربية
We present results from two-dimensional, general relativistic, viscous, radiation hydrodynamic numerical simulations of Shakura-Sunyaev thin disks accreting onto stellar mass Schwarzschild black holes. We consider cases on both the gas- and radiation-pressure-dominated branches of the thermal equilibrium curve, with mass accretion rates spanning the range from $dot{M} = 0.01 L_mathrm{Edd}/c^2$ to $10 L_mathrm{Edd}/c^2$. The simulations directly test the stability of this standard disk model on the different branches. We find clear evidence of thermal instability for all radiation-pressure-dominated disks, resulting universally in the vertical collapse of the disks, which in some cases then settle onto the stable, gas-pressure-dominated branch. Although these results are consistent with decades-old theoretical predictions, they appear to be in conflict with available observational data from black hole X-ray binaries. We also find evidence for a radiation-pressure-driven instability that breaks the unstable disks up into alternating rings of high and low surface density on a timescale comparable to the thermal collapse. Since radiation is included self-consistently in the simulations, we are able to calculate lightcurves and power density spectra (PDS). For the most part, we measure radiative efficiencies (ratio of luminosity to mass accretion rate) close to 6%, as expected for a non-rotating black hole. The PDS appear as broken power laws, with a break typically around 100 Hz. There is no evidence of significant excess power at any frequencies, i.e. no quasi-periodic oscillations are observed.
We perform detailed variability analysis of two-dimensional viscous, radiation hydrodynamic numerical simulations of Shakura-Sunyaev thin disks around a stellar mass black hole. Disk models are initialized on both the gas-, as well as radiation-, pre
The classical, relativistic thin-disk theory of Novikov and Thorne (NT) predicts a maximum accretion efficiency of 40% for an optically thick, radiatively efficient accretion disk around a maximally spinning black hole (BH). However, when a strong ma
Many astrophysical sources, e.g., cataclysmic variables, X-ray binaries, active galactic nuclei, exhibit a wind outflow, when they reveal a multicolor blackbody spectrum, hence harboring a geometrically thin Keplerian accretion disk. Unlike an advect
Using the relativistic equations of radiation hydrodynamics in the viscous limit, we analyze the boundary layers that develop between radiation-dominated jets and their environments. In this paper we present the solution for the self-similar, 2-D, pl
We use global three dimensional radiation magneto-hydrodynamic simulations to study the properties of inner regions of accretion disks around a 5times 10^8 solar mass black hole with mass accretion rates reaching 7% and 20% of the Eddington value. Th