ﻻ يوجد ملخص باللغة العربية
We study photon echo generation in disordered media with the help of multiple scattering theory based on diagrammatic approach and numerical simulations. We show that a strong correlation exists between the driving fields at the origin of the echo and the echo beam. Opening the way to a better understanding of non-linear wave propagation in complex materials, this work supports recent experimental results with applications to the measurement of the optical dipole lifetime $T_2$ in powders.
We give an exposure to diagrammatic techniques in waveguide QED systems. A particular emphasis is placed on the systems with delayed coherent quantum feedback. Specifically, we show that the $N$-photon scattering matrices in single-qubit waveguide QE
We develop a formalism to study the Resonant Inelastic X-ray Scattering (RIXS) response in metals based on the diagrammatic expansion for its cross section. The standard approach to the solution of the RIXS problem relies on two key approximations: s
We develop a method based on the cross-spectrum of an intensity-modulated CW laser, which can extract a signal from an extremely noisy environment and image objects hidden in turbid media. We theoretically analyzed our scheme and performed the experi
Ghost imaging with thermal light in scattering media is investigated. We demonstrated both theoretically and experimentally for the first time that the image with high quality can still be obtained in the scattering media by ghost imaging. The scatte
We characterize the optical response of a three-level atom subjected to an incoherent pump and continuously illuminated with a weak, quasi-resonant probe field. To this end, we apply a wavefunction approach based on QED Hamiltonian perturbation theor