ترغب بنشر مسار تعليمي؟ اضغط هنا

Deconstructing Little Strings with $mathcal{N}=1$ Gauge Theories on Ellipsoids

78   0   0.0 ( 0 )
 نشر من قبل Constantinos Papageorgakis
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A formula was recently proposed for the perturbative partition function of certain $mathcal N=1$ gauge theories on the round four-sphere, using an analytic-continuation argument in the number of dimensions. These partition functions are not currently accessible via the usual supersymmetric-localisation technique. We provide a natural refinement of this result to the case of the ellipsoid. We then use it to write down the perturbative partition function of an $mathcal N=1$ toroidal-quiver theory (a double orbifold of $mathcal N=4$ super Yang-Mills) and show that, in the deconstruction limit, it reproduces the zero-winding contributions to the BPS partition function of (1,1) Little String Theory wrapping an emergent torus. We therefore successfully test both the expressions for the $mathcal N=1$ partition functions, as well as the relationship between the toroidal-quiver theory and Little String Theory through dimensional deconstruction.



قيم البحث

اقرأ أيضاً

Strings in $mathcal{N}=2$ supersymmetric ${rm U}(1)^N$ gauge theories with $N$ hypermultiplets are studied in the generic setting of an arbitrary Fayet-Iliopoulos triplet of parameters for each gauge group and an invertible charge matrix. Although th e string tension is generically of a square-root form, it turns out that all existing BPS (Bogomolnyi-Prasad-Sommerfield) solutions have a tension which is linear in the magnetic fluxes, which in turn are linearly related to the winding numbers. The main result is a series of theorems establishing three different kinds of solutions of the so-called constraint equations, which can be pictured as orthogonal directions to the magnetic flux in ${rm SU}(2)_R$ space. We further prove for all cases, that a seemingly vanishing Bogomolnyi bound cannot have solutions. Finally, we write down the most general vortex equations in both master form and Taubes-like form. Remarkably, the final vortex equations essentially look Abelian in the sense that there is no trace of the ${rm SU}(2)_R$ symmetry in the equations, after the constraint equations have been solved.
In this paper we present a beautifully consistent web of evidence for the existence of interacting 4d rank-1 $mathcal{N}=2$ SCFTs obtained from gauging discrete subgroups of global symmetries of other existing 4d rank-1 $mathcal{N}=2$ SCFTs. The glob al symmetries that can be gauged involve a non-trivial combination of discrete subgroups of the $U(1)_R$, low-energy EM duality group $SL(2,mathbb{Z})$, and the outer automorphism group of the flavor symmetry algebra, Out($F$). The theories that we construct are remarkable in many ways: (i) two of them have exceptional $F_4$ and $G_2$ flavor groups; (ii) they substantially complete the picture of the landscape of rank-1 $mathcal{N}=2$ SCFTs as they realize all but one of the remaining consistent rank-1 Seiberg-Witten geometries that we previously constructed but were not associated to known SCFTs; and (iii) some of them have enlarged $mathcal{N}=3$ SUSY, and have not been previously constructed. They are also examples of SCFTs which violate the Shapere-Tachikawa relation between the conformal central charges and the scaling dimension of the Coulomb branch vev. We propose a modification of the formulas computing these central charges from the topologically twisted Coulomb branch partition function which correctly compute them for discretely gauged theories.
We propose 5-brane webs for 5d $mathcal{N}=1$ $G_2$ gauge theories. From a Higgsing of the $SO(7)$ gauge theory with a hypermultiplet in the spinor representation, we construct two types of 5-brane web configurations for the pure $G_2$ gauge theory u sing an O5-plane or an $widetilde{text{O5}}$-plane. Adding flavors to the 5-brane web for the pure $G_2$ gauge theory is also discussed. Based on the obtained 5-brane webs, we compute the partition functions for the 5d $G_2$ gauge theories using the recently suggested topological vertex formulation with an O5-plane, and we find agreement with known results.
We consider $3d$ $mathcal{N}!=!2$ gauge theories with fundamental matter plus a single field in a rank-$2$ representation. Using iteratively a process of deconfinement of the rank-$2$ field, we produce a sequence of Seiberg-dual quiver theories. We d etail this process in two examples with zero superpotential: $Usp(2N)$ gauge theory with an antisymmetric field and $U(N)$ gauge theory with an adjoint field. The fully deconfined dual quiver has $N$ nodes, and can be interpreted as an Aharony dual of theories with rank-$2$ matter. All chiral ring generators of the original theory are mapped into gauge singlet fields of the fully deconfined quiver dual.
We classify 5d N=1 gauge theories carrying a simple gauge group that can arise by mass-deforming 5d SCFTs and 6d SCFTs (compactified on a circle, possibly with a twist). For theories having a 6d UV completion, we determine the tensor branch data of t he 6d SCFT and capture the twist in terms of the tensor branch data. We also determine the dualities between these 5d gauge theories, thus determining the sets of gauge theories having a common UV completion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا