ﻻ يوجد ملخص باللغة العربية
A formula was recently proposed for the perturbative partition function of certain $mathcal N=1$ gauge theories on the round four-sphere, using an analytic-continuation argument in the number of dimensions. These partition functions are not currently accessible via the usual supersymmetric-localisation technique. We provide a natural refinement of this result to the case of the ellipsoid. We then use it to write down the perturbative partition function of an $mathcal N=1$ toroidal-quiver theory (a double orbifold of $mathcal N=4$ super Yang-Mills) and show that, in the deconstruction limit, it reproduces the zero-winding contributions to the BPS partition function of (1,1) Little String Theory wrapping an emergent torus. We therefore successfully test both the expressions for the $mathcal N=1$ partition functions, as well as the relationship between the toroidal-quiver theory and Little String Theory through dimensional deconstruction.
Strings in $mathcal{N}=2$ supersymmetric ${rm U}(1)^N$ gauge theories with $N$ hypermultiplets are studied in the generic setting of an arbitrary Fayet-Iliopoulos triplet of parameters for each gauge group and an invertible charge matrix. Although th
In this paper we present a beautifully consistent web of evidence for the existence of interacting 4d rank-1 $mathcal{N}=2$ SCFTs obtained from gauging discrete subgroups of global symmetries of other existing 4d rank-1 $mathcal{N}=2$ SCFTs. The glob
We propose 5-brane webs for 5d $mathcal{N}=1$ $G_2$ gauge theories. From a Higgsing of the $SO(7)$ gauge theory with a hypermultiplet in the spinor representation, we construct two types of 5-brane web configurations for the pure $G_2$ gauge theory u
We consider $3d$ $mathcal{N}!=!2$ gauge theories with fundamental matter plus a single field in a rank-$2$ representation. Using iteratively a process of deconfinement of the rank-$2$ field, we produce a sequence of Seiberg-dual quiver theories. We d
We classify 5d N=1 gauge theories carrying a simple gauge group that can arise by mass-deforming 5d SCFTs and 6d SCFTs (compactified on a circle, possibly with a twist). For theories having a 6d UV completion, we determine the tensor branch data of t