ﻻ يوجد ملخص باللغة العربية
In the framework of the supervised learning of a real function defined on a space X , the so called Kriging method stands on a real Gaussian field defined on X. The Euclidean case is well known and has been widely studied. In this paper, we explore the less classical case where X is the non commutative finite group of permutations. In this setting, we propose and study an harmonic analysis of the covariance operators that enables to consider Gaussian processes models and forecasting issues. Our theory is motivated by statistical ranking problems.
Propagating input uncertainty through non-linear Gaussian process (GP) mappings is intractable. This hinders the task of training GPs using uncertain and partially observed inputs. In this paper we refer to this task as semi-described learning. We th
When fitting Bayesian machine learning models on scarce data, the main challenge is to obtain suitable prior knowledge and encode it into the model. Recent advances in meta-learning offer powerful methods for extracting such prior knowledge from data
Kernel methods on discrete domains have shown great promise for many challenging data types, for instance, biological sequence data and molecular structure data. Scalable kernel methods like Support Vector Machines may offer good predictive performan
We introduce a framework for Continual Learning (CL) based on Bayesian inference over the function space rather than the parameters of a deep neural network. This method, referred to as functional regularisation for Continual Learning, avoids forgett
We present a multi-task learning formulation for Deep Gaussian processes (DGPs), through non-linear mixtures of latent processes. The latent space is composed of private processes that capture within-task information and shared processes that capture