Dynamic-structured Semantic Propagation Network


الملخص بالإنكليزية

Semantic concept hierarchy is still under-explored for semantic segmentation due to the inefficiency and complicated optimization of incorporating structural inference into dense prediction. This lack of modeling semantic correlations also makes prior works must tune highly-specified models for each task due to the label discrepancy across datasets. It severely limits the generalization capability of segmentation models for open set concept vocabulary and annotation utilization. In this paper, we propose a Dynamic-Structured Semantic Propagation Network (DSSPN) that builds a semantic neuron graph by explicitly incorporating the semantic concept hierarchy into network construction. Each neuron represents the instantiated module for recognizing a specific type of entity such as a super-class (e.g. food) or a specific concept (e.g. pizza). During training, DSSPN performs the dynamic-structured neuron computation graph by only activating a sub-graph of neurons for each image in a principled way. A dense semantic-enhanced neural block is proposed to propagate the learned knowledge of all ancestor neurons into each fine-grained child neuron for feature evolving. Another merit of such semantic explainable structure is the ability of learning a unified model concurrently on diverse datasets by selectively activating different neuron sub-graphs for each annotation at each step. Extensive experiments on four public semantic segmentation datasets (i.e. ADE20K, COCO-Stuff, Cityscape and Mapillary) demonstrate the superiority of our DSSPN over state-of-the-art segmentation models. Moreoever, we demonstrate a universal segmentation model that is jointly trained on diverse datasets can surpass the performance of the common fine-tuning scheme for exploiting multiple domain knowledge.

تحميل البحث