ترغب بنشر مسار تعليمي؟ اضغط هنا

Symplectic Frieze Patterns

107   0   0.0 ( 0 )
 نشر من قبل Sophie Morier-Genoud
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new class of friezes which is related to symplectic geometry. On the algebraic and combinatrics sides, this variant of friezes is related to the cluster algebras involving the Dynkin diagrams of type ${rm C}_{2}$ and ${rm A}_{m}$. On the geometric side, they are related to the moduli space of Lagrangian configurations of points in the 4-dimensional symplectic space introduced in [Conley C.H., Ovsienko V., Math. Ann. 375 (2019), 1105-1145]. Symplectic friezes share similar combinatorial properties to those of Coxeter friezes and SL-friezes.



قيم البحث

اقرأ أيضاً

Frieze patterns of numbers, introduced in the early 70s by Coxeter, are currently attracting much interest due to connections with the recent theory of cluster algebras. The present paper aims to review the original work of Coxeter and the new develo pments around the notion of frieze, focusing on the representation theoretic, geometric and combinatorial approaches.
We introduce a supersymmetric analog of the classical Coxeter frieze patterns. Our approach is based on the relation with linear difference operators. We define supersymmetric analogs of linear difference operators called Hills operators. The space o f these superfriezes is an algebraic supervariety, which is isomorphic to the space of supersymmetric second order difference equations, called Hills equations.
We study a $2 times 2$ matrix equation arising naturally in the theory of Coxeter frieze patterns. It is formulated in terms of the generators of the group $mathrm{PSL}(2,mathbb{Z})$ and is closely related to continued fractions. It appears in a numb er of different areas, for example, toric varieties. We count its positive solutions, obtaining a series of integer sequences, some known and some new. This extends classical work of Conway and Coxeter proving that the first of these sequences is the Catalan numbers.
117 - Tao Feng , Ye Wang , Qing Xiang 2019
In this paper, we develop a new method for constructing $m$-ovoids in the symplectic polar space $W(2r-1,q)$ from some strongly regular Cayley graphs in cite{Brouwer1999Journal}. Using this method, we obtain many new $m$-ovoids which can not be derived by field reduction.
By considering the specialisation $s_{lambda}(1,q,q^2,...,q^{n-1})$ of the Schur function, Stanley was able to describe a formula for the number of semistandard Young tableaux of shape $lambda$ in terms of two properties of the boxes in the diagram f or $lambda$. Using specialisations of symplectic and orthogonal Schur functions, we derive corresponding formulae, first given by El Samra and King, for the number of semistandard symplectic and orthogonal $lambda$-tableaux.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا