ﻻ يوجد ملخص باللغة العربية
Optically-active point defects in various host materials, such as diamond and silicon carbide (SiC), have shown significant promise as local sensors of magnetic fields, electric fields, strain and temperature. Current sensing techniques take advantage of the relaxation and coherence times of the spin state within these defects. Here we show that the defect charge state can also be used to sense the environment, in particular high frequency (MHz-GHz) electric fields, complementing established spin-based techniques. This is enabled by optical charge conversion of the defects between their photoluminescent and dark charge states, with conversion rate dependent on the electric field (energy density). The technique provides an all-optical high frequency electrometer which is tested in 4H-SiC for both ensembles of divacancies and silicon vacancies, from cryogenic to room temperature, and with a measured sensitivity of ~41 (V/cm)**2 / $sqrt{Hz}$. Finally, due to the piezoelectric character of SiC, we obtain spatial 3D maps of surface acoustic wave modes in a mechanical resonator.
Defects in silicon carbide (SiC) have emerged as a favorable platform for optically-active spin-based quantum technologies. Spin qubits exist in specific charge states of these defects, where the ability to control these states can provide enhanced s
Quantum technology relies on proper hardware, enabling coherent quantum state control as well as efficient quantum state readout. In this regard, wide-bandgap semiconductors are an emerging material platform with scalable wafer fabrication methods, h
The silicon monovacancy in 4H-SiC is a promising candidate for solid-state quantum information processing. We perform high-resolution optical spectroscopy on single V2 defects at cryogenic temperatures. We find favorable low temperature optical prope
The Ion Beam Induced Charge Collection (IBIC) technique was used to map the charge collection efficiency (CCE) of a 4H-SiC photodetector with coplanar interdigitated Schottky barrier electrodes and a common ohmic contact on the back side. IBIC maps w
Point defects in solids promise precise measurements of various quantities. Especially magnetic field sensing using the spin of point defects has been of great interest recently. When optical readout of spin states is used, point defects achieve opti