ﻻ يوجد ملخص باللغة العربية
The early stage density oscillations of the electronic charge in molecules irradiated by an attosecond XUV pulse takes place on femto- or subfemtosecond timescales. This ultrafast charge migration process is a central topic in attoscience as it dictates the relaxation pathways of the molecular structure. A predictive quantum theory of ultrafast charge migration should incorporate the atomistic details of the molecule, electronic correlations and the multitude of ionization channels activated by the broad-bandwidth XUV pulse. In this work we propose a first-principles Non Equilibrium Greens Function method fulfilling all three requirements, and apply it to a recent experiment on the photoexcited phenylalanine aminoacid. Our results show that dynamical correlations are necessary for a quantitative overall agreement with the experimental data. In particular, we are able to capture the transient oscillations at frequencies 0.15PHz and 0.30PHz in the hole density of the amine group, as well as their suppression and the concomitant development of a new oscillation at frequency 0.25PHz after about 14 femtoseconds.
Exploring low-loss two-dimensional plasmon modes is considered central for achieving light manipulation at the nanoscale and applications in plasmonic science and technology. In this context, pump-probe spectroscopy is a powerful tool for investigati
We present an alternative approach to studying topology in open quantum systems, relying directly on Greens functions and avoiding the need to construct an effective non-Hermitian Hamiltonian. We define an energy-dependent Chern number based on the e
Quantum dots are recognized as a suitable platform for studying thermodynamic phenomena involving single electronic charges and spins in nano-scale devices. However, such a thermodynamic system is usually driven by electron reservoirs at different te
Here we address two nonequilibrium Greens functions approaches for a resonant tunneling structure under a sudden switch of a bias. Our aim is to stress that the time-dependent Keldysh formulation of Jauho, Wingreen and Meir, and the partition-free sc
Solid state qubits from paramagnetic point defects in solids are promising platforms to realize quantum networks and novel nanoscale sensors. Recent advances in materials engineering make possible to create proximate qubits in solids that might inter