ترغب بنشر مسار تعليمي؟ اضغط هنا

The Effect of Frame Rate on 3D Video Quality and Bitrate

64   0   0.0 ( 0 )
 نشر من قبل Amin Banitalebi-Dehkordi
 تاريخ النشر 2018
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Increasing the frame rate of a 3D video generally results in improved Quality of Experience (QoE). However, higher frame rates involve a higher degree of complexity in capturing, transmission, storage, and display. The question that arises here is what frame rate guarantees high viewing quality of experience given the existing/required 3D devices and technologies (3D cameras, 3D TVs, compression, transmission bandwidth, and storage capacity). This question has already been addressed for the case of 2D video, but not for 3D. The objective of this paper is to study the relationship between 3D quality and bitrate at different frame rates. Our performance evaluations show that increasing the frame rate of 3D videos beyond 60 fps may not be visually distinguishable. In addition, our experiments show that when the available bandwidth is reduced, the highest possible 3D quality of experience can be achieved by adjusting (decreasing) the frame rate instead of increasing the compression ratio. The results of our study are of particular interest to network providers for rate adaptation in variable bitrate channels.



قيم البحث

اقرأ أيضاً

The diversity of video delivery pipeline poses a grand challenge to the evaluation of adaptive bitrate (ABR) streaming algorithms and objective quality-of-experience (QoE) models. Here we introduce so-far the largest subject-rated database of its kin d, namely WaterlooSQoE-IV, consisting of 1350 adaptive streaming videos created from diverse source contents, video encoders, network traces, ABR algorithms, and viewing devices. We collect human opinions for each video with a series of carefully designed subjective experiments. Subsequent data analysis and testing/comparison of ABR algorithms and QoE models using the database lead to a series of novel observations and interesting findings, in terms of the effectiveness of subjective experiment methodologies, the interactions between user experience and source content, viewing device and encoder type, the heterogeneities in the bias and preference of user experiences, the behaviors of ABR algorithms, and the performance of objective QoE models. Most importantly, our results suggest that a better objective QoE model, or a better understanding of human perceptual experience and behaviour, is the most dominating factor in improving the performance of ABR algorithms, as opposed to advanced optimization frameworks, machine learning strategies or bandwidth predictors, where a majority of ABR research has been focused on in the past decade. On the other hand, our performance evaluation of 11 QoE models shows only a moderate correlation between state-of-the-art QoE models and subjective ratings, implying rooms for improvement in both QoE modeling and ABR algorithms. The database is made publicly available at: url{https://ece.uwaterloo.ca/~zduanmu/waterloosqoe4/}.
The emergence of multiview displays has made the need for synthesizing virtual views more pronounced, since it is not practical to capture all of the possible views when filming multiview content. View synthesis is performed using the available views and depth maps. There is a correlation between the quality of the synthesized views and the quality of depth maps. In this paper we study the effect of depth map quality on perceptual quality of synthesized view through subjective and objective analysis. Our evaluation results show that: 1) 3D video quality depends highly on the depth map quality and 2) the Visual Information Fidelity index computed between the reference and distorted depth maps has Pearson correlation ratio of 0.75 and Spearman rank order correlation coefficient of 0.67 with the subjective 3D video quality.
One of the challenges faced by many video providers is the heterogeneity of network specifications, user requirements, and content compression performance. The universal solution of a fixed bitrate ladder is inadequate in ensuring a high quality of u ser experience without re-buffering or introducing annoying compression artifacts. However, a content-tailored solution, based on extensively encoding across all resolutions and over a wide quality range is highly expensive in terms of computational, financial, and energy costs. Inspired by this, we propose an approach that exploits machine learning to predict a content-optimized bitrate ladder. The method extracts spatio-temporal features from the uncompressed content, trains machine-learning models to predict the Pareto front parameters, and, based on that, builds the ladder within a defined bitrate range. The method has the benefit of significantly reducing the number of encodes required per sequence. The presented results, based on 100 HEVC-encoded sequences, demonstrate a reduction in the number of encodes required when compared to an exhaustive search and an interpolation-based method, by 89.06% and 61.46%, respectively, at the cost of an average Bj{o}ntegaard Delta Rate difference of 1.78% compared to the exhaustive approach. Finally, a hybrid method is introduced that selects either the proposed or the interpolation-based method depending on the sequence features. This results in an overall 83.83% reduction of required encodings at the cost of an average Bj{o}ntegaard Delta Rate difference of 1.26%.
Stereoscopic video technologies have been introduced to the consumer market in the past few years. A key factor in designing a 3D system is to understand how different visual cues and distortions affect the perceptual quality of stereoscopic video. T he ultimate way to assess 3D video quality is through subjective tests. However, subjective evaluation is time consuming, expensive, and in some cases not possible. The other solution is developing objective quality metrics, which attempt to model the Human Visual System (HVS) in order to assess perceptual quality. Although several 2D quality metrics have been proposed for still images and videos, in the case of 3D efforts are only at the initial stages. In this paper, we propose a new full-reference quality metric for 3D content. Our method mimics HVS by fusing information of both the left and right views to construct the cyclopean view, as well as taking to account the sensitivity of HVS to contrast and the disparity of the views. In addition, a temporal pooling strategy is utilized to address the effect of temporal variations of the quality in the video. Performance evaluations showed that our 3D quality metric quantifies quality degradation caused by several representative types of distortions very accurately, with Pearson correlation coefficient of 90.8 %, a competitive performance compared to the state-of-the-art 3D quality metrics.
A key factor in designing 3D systems is to understand how different visual cues and distortions affect the perceptual quality of 3D video. The ultimate way to assess video quality is through subjective tests. However, subjective evaluation is time co nsuming, expensive, and in most cases not even possible. An alternative solution is objective quality metrics, which attempt to model the Human Visual System (HVS) in order to assess the perceptual quality. The potential of 3D technology to significantly improve the immersiveness of video content has been hampered by the difficulty of objectively assessing Quality of Experience (QoE). A no-reference (NR) objective 3D quality metric, which could help determine capturing parameters and improve playback perceptual quality, would be welcomed by camera and display manufactures. Network providers would embrace a full-reference (FR) 3D quality metric, as they could use it to ensure efficient QoE-based resource management during compression and Quality of Service (QoS) during transmission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا