ﻻ يوجد ملخص باللغة العربية
There are reasons to believe that the ground state of the magnetic rare earth pyrochlore Yb$_2$Ti$_2$O$_7$ is on the boundary between competing ground states. We have carried out $mathrm{textit{ab initio}}$ density functional calculations to determine the most stable chemical formula as a function of the oxygen chemical potential and the likely location of the oxygen atoms in the unit cell of the stuffed system. We find that it is energetically favorable in the stuffed crystal (with an Yb replacement on a Ti site) to contain oxygen vacancies which dope the Yb 4$mathrm{textit{f}}$ orbitals and qualitatively change the electronic properties of the system. In addition, with the inclusion of the contribution of spin-orbit-coupling (SOC) on top of the GGA+U approach, we investigated the electronic structure and the magnetic moments of the most stable stuffed system. In our determined stuffed structure the valence bands as compared to those of the pure system are pushed down and a change in hybridization between the O 2$mathrm{textit{p}}$ orbitals and the metal ion states is found. Our first-principle findings should form a foundation for effective models describing the low-temperature properties of this material whose true ground state remains controversial.
The frustrated pyrochlore magnet Yb$_2$Ti$_2$O$_7$ has the remarkable property that it orders magnetically, but has no propagating magnons over wide regions of the Brillouin zone. Here we use inelastic neutron scattering to follow how the spectrum ev
In the quest to realize a quantum spin liquid (QSL), magnetic long-range order is hardly welcome. Yet it can offer deep insights into a complex world of strong correlations and fluctuations. Much hope was placed in the cubic pyrochlore Yb$_2$Ti$_2$O$
We report low temperature specific heat and muon spin relaxation/rotation ($mu$SR) measurements on both polycrystalline and single crystal samples of the pyrochlore magnet Yb$_2$Ti$_2$O$_7$. This system is believed to possess a spin Hamiltonian suppo
We report on measurements of the sound velocity and attenuation in a single crystal of the candidate quantum- spin-ice material Yb$_2$Ti$_2$O$_7$ as a function of temperature and magnetic field. The acoustic modes couple to the spins magneto-elastica
The very nature of the ground state of the pyrochlore compound Yb$_2$Ti$_2$O$_7$ is much debated, as experimental results demonstrate evidence for both a disordered or a long-range ordered ground state. Indeed, the delicate balance of exchange intera