ﻻ يوجد ملخص باللغة العربية
We mainly study the M-estimation method for the high-dimensional linear regression model, and discuss the properties of M-estimator when the penalty term is the local linear approximation. In fact, M-estimation method is a framework, which covers the methods of the least absolute deviation, the quantile regression, least squares regression and Huber regression. We show that the proposed estimator possesses the good properties by applying certain assumptions. In the part of numerical simulation, we select the appropriate algorithm to show the good robustness of this method
For a multivariate linear model, Wilks likelihood ratio test (LRT) constitutes one of the cornerstone tools. However, the computation of its quantiles under the null or the alternative requires complex analytic approximations and more importantly, th
We propose a new method for changepoint estimation in partially-observed, high-dimensional time series that undergo a simultaneous change in mean in a sparse subset of coordinates. Our first methodological contribution is to introduce a MissCUSUM tra
We obtain explicit error bounds for the $d$-dimensional normal approximation on hyperrectangles for a random vector that has a Stein kernel, or admits an exchangeable pair coupling, or is a non-linear statistic of independent random variables or a su
Let ${X}_{k}=(x_{k1}, cdots, x_{kp}), k=1,cdots,n$, be a random sample of size $n$ coming from a $p$-dimensional population. For a fixed integer $mgeq 2$, consider a hypercubic random tensor $mathbf{{T}}$ of $m$-th order and rank $n$ with begin{eqnar
We study variance estimation and associated confidence intervals for parameters characterizing genetic effects from genome-wide association studies (GWAS) misspecified mixed model analysis. Previous studies have shown that, in spite of the model miss