Double Periodic Variables (DPVs) are hot Algols showing a long photometric cycle of uncertain origin. We report the discovery of changes in the orbital light curve of OGLE-LMC-DPV-097 which depend on the phase of its long photometric cycle. During the ascending branch of the long-cycle the brightness at the first quadrature is larger than during the second quadrature, during the maximum of the long-cycle the brightness is basically the same at both quadratures, during the descending branch the brightness at the second quadrature is larger than during the first quadrature and during the minimum of the long-cycle the secondary minimum disappears. We model the light curve at different phases of the long-cycle and find that the data are consistent with changes in the properties of the accretion disk and two disk spots. The disks size and temperature change with the long-cycle period. We find a smaller and hotter disk at minimum and larger and cooler disk at maximum. The spot temperatures, locations and angular sizes also show variability during the long-cycle.