ﻻ يوجد ملخص باللغة العربية
The currently accelerated expansion of our Universe is unarguably one of the most intriguing problems in todays physics research. Two realistic non-minimal torsion-matter coupling $f(T)$ models have been established and studied in our previous papers [Phys. Rev. D92, 104038(2015) and Eur. Phys. J. C77, 504(2017)] aiming to explain this dark energy problem. In this paper, we study the generalized power-law torsion-matter coupling $f(T)$ model. Dynamical system analysis shows that the three expansion phases of the Universe, i.e. the radiation dominated era, the matter dominated era and the dark energy dominated era, can all be reproduced in this generalized model. By using the statefinder and $Om$ diagnostics, we find that the different cases of the model can be distinguished from each other and from other dark energy models such as the two models in our previous papers, $Lambda$CDM, quintessence and Chaplygin gas. Furthermore, the analyses also show that all kinds of generalized power-law torsion-matter coupling model are able to cross the $w=-1$ divide from below to above, thus the decrease of the energy density resulting from the crossing of $w$ will make the catastrophic fate of the Universe avoided and a de Sitter expansion fate in the future will be approached.
We provide for the first time the growth index of linear matter fluctuations of the power law $f(T) propto (-T)^{b}$ gravity model. We find that the asymptotic form of this particular $f(T)$ model is $gamma approx frac{6}{11-6b}$ which obviously exte
Wormholes are hypothetical tunnels that connect remote parts of spacetime. In General Relativity, wormholes are threaded by exotic matter that violates the energy conditions. In this work, we consider wormholes threaded by nonexotic matter in nonmini
Gravity is attributed to the spacetime curvature in classical General Relativity (GR). But, other equivalent formulation or representations of GR, such as torsion or non-metricity have altered the perception. We consider the Weyl-type $f(Q, T)$ gravi
Using the observation data of SNeIa, CMB and BAO, we establish two concrete $f(T)$ models with nonminimal torsion-matter coupling extension. We study in detail the cosmological implication of our models and find they are successful in describing the
In the previous paper, we have constructed two $f(T)$ models with nonminimal torsion-matter coupling extension, which are successful in describing the evolution history of the Universe including the radiation-dominated era, the matter-dominated era,