ﻻ يوجد ملخص باللغة العربية
Solar prominences are subject to all kinds of perturbations during their lifetime, and frequently demonstrate oscillations. The study of prominence oscillations provides an alternative way to investigate their internal magnetic and thermal structures as the oscillation characteristics depend on their interplay with the solar corona. Prominence oscillations can be classified into longitudinal and transverse types. We perform three-dimensional ideal magnetohydrodynamic simulations of prominence oscillations along a magnetic flux rope, with the aim to compare the oscillation periods with those predicted by various simplified models and to examine the restoring force. We find that the longitudinal oscillation has a period of about 49 minutes, which is in accordance with the pendulum model where the field-ligned component of gravity serves as the restoring force. In contrast, the horizontal transverse oscillation has a period of about 10 minutes and the vertical transverse oscillation has a period of about 14 minutes, and both of them can be nicely fitted with a two-dimensional slab model. We also find that the magnetic tension force dominates most of the time in transverse oscillations, except for the first minute when magnetic pressure overwhelms.
We investigated the dynamic evolution of a 3-dimensional (3D) flux rope eruption and magnetic reconnection process in a solar flare, by simply extending 2-dimensional (2D) resistive magnetohydrodynamic simulation model of solar flares with low $beta$
The sunspot penumbra is a transition zone between the strong vertical magnetic field area (sunspot umbra) and the quiet Sun. The penumbra has a fine filamentary structure that is characterized by magnetic field lines inclined toward the surface. Nume
The formation and evolution process and magnetic configuration of solar prominences remain unclear. In order to study the formation process of prominences, we examine continuous observations of a prominence in NOAA AR 10953 with the Solar Optical Tel
Solar eruptions are the most powerful drivers of space weather. To understand their cause and nature, it is crucial to know how the coronal magnetic field evolves before eruption. Here we study the formation process of a relatively large-scale magnet
The onset of a solar eruption is formulated here as either a magnetic catastrophe or as an instability. Both start with the same equation of force balance governing the underlying equilibria. Using a toroidal flux rope in an external bipolar or quadr