ترغب بنشر مسار تعليمي؟ اضغط هنا

LHC Phenomenology of Dark Matter with a Color-Octet Partner

180   0   0.0 ( 0 )
 نشر من قبل Alessandro Morandini
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Colored dark sectors where the dark matter particle is accompanied by colored partners have recently attracted theoretical and phenomenological interest. We explore the possibility that the dark sector consists of the dark matter particle and a color-octet partner, where the interaction with the Standard Model is governed by an effective operator involving gluons. The resulting interactions resemble the color analogues of electric and magnetic dipole moments. Although many phenomenological features of this kind of model only depend on the group representation of the partner under SU(3)$_c$, we point out that interesting collider signatures such as $R$-hadrons are indeed controlled by the interaction operator between the dark and visible sector. We perform a study of the current constraints and future reach of LHC searches, where the complementarity between different possible signals is highlighted and exploited.



قيم البحث

اقرأ أيضاً

In the scenario that a dark matter (DM) is a weakly interacting massive particle, there are many possibilities of the interactions with the Standard Model (SM) particles to achieve the relic density of DM. In this paper, we consider one simple DM mod el where the DM candidate is a complex scalar and interacts with the SM particles via exchange of the Higgs particle and an extra quark, named bottom partner. The extra quark carries the same quantum number as the right-handed down-type quarks and has Yukawa couplings with the DM candidate and the right-handed down-type quarks. The Yukawa interactions are not only relevant to the thermal relic density of the DM, but also contribute to the flavor physics, such as the $Delta F=2$ processes. In addition, the flavor alignment of the Yukawa couplings is related to the decay modes of the extra quark. Then, we can find the explicit correlations among the physical observables in DM physics, flavor physics and the signals at the LHC. Based on the numerical analyses of the thermal relic density, the direct detection of the DM and the current LHC bounds using the latest results, we survey our predictions for the $Delta F=2$ processes. We investigate the perturbative bound on the Yukawa coupling, as well. Study of a fermionic DM model with extra scalar quarks is also given for comparison.
Elements of the phenomenology of color-octet scalars (sgluons), as predicted in the hybrid N=1/N=2 supersymmetric model, are discussed in the light of forthcoming experiments at the CERN Large Hadron Collider.
It is well known that for the pure standard model triplet fermionic WIMP-type dark matter (DM), the relic density is satisfied around 2 TeV. For such a heavy mass particle, the production cross-section at 13 TeV run of LHC will be very small. Extendi ng the model further with a singlet fermion and a triplet scalar, DM relic density can be satisfied for even much lower masses. The lower mass DM can be copiously produced at LHC and hence the model can be tested at collider. For the present model we have studied the multi jet ($geq 2,j$) + missing energy ($cancel{E}_{T}$) signal and show that this can be detected in the near future of the LHC 13 TeV run. We also predict that the present model is testable by the earth based DM direct detection experiments like Xenon-1T and in future by Darwin.
We study the effective field theory obtained by extending the Standard Model field content with two singlets: a 750 GeV (pseudo-)scalar and a stable fermion. Accounting for collider productions initiated by both gluon and photon fusion, we investigat e where the theory is consistent with both the LHC diphoton excess and bounds from Run 1. We analyze dark matter phenomenology in such regions, including relic density constraints as well as collider, direct, and indirect bounds. Scalar portal dark matter models are very close to limits from direct detection and mono-jet searches if gluon fusion dominates, and not constrained at all otherwise. Pseudo-scalar models are challenged by photon line limits and mono-jet searches in most of the parameter space.
New physics at the weak scale that can couple to quarks typically gives rise to unacceptably large flavor changing neutral currents. An attractive way to avoid this problem is to impose the principal of minimal flavor violation (MFV). Recently it was noted that in MFV only scalars with the same gauge quantum numbers as the standard model Higgs doublet or color octet scalars with the same weak quantum numbers as the Higgs doublet can couple to quarks. In this paper we compute the one-loop rate for production of a single color octet scalar through gluon fusion at the LHC, which can become greater than the tree level pair production rate for octet scalar masses around a TeV. We also calculate the precision electroweak constraint from Z decays to a b and anti-b quark; this constraint on color octet mass and Yukawa coupling affects the allowed range for single octet scalar production through gluon fusion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا