ﻻ يوجد ملخص باللغة العربية
Non-parametric morphology measures are a powerful tool for identifying galaxy mergers at low redshifts. We employ cosmological zoom simulations using Gizmo with the Mufasa feedback scheme, post-processed using 3D dust radiative transfer into mock observations, to study whether common morphological measures Gini G, M20, concentration C, and asymmetry A are effective at identifying major galaxy mergers at z ~ 2 - 4, i.e. Cosmic Noon. Our zoom suite covers galaxies with 10^8.6 < M_* < 10^11 M_sun at z ~ 2, and broadly reproduces key global galaxy observations. Our primary result is that these morphological measures are unable to robustly pick out galaxies currently undergoing mergers during Cosmic Noon, typically performing no better than a random guess. This improves only marginally if we consider whether galaxies have undergone a merger within the last Gyr. When also considering minor mergers, galaxies display no trend of moving towards the merger regime with increasing merger ratio. From z = 4 -> 2, galaxies move from the non-merger towards the merger regime in all statistics, but this is primarily an effect of mass: Above a given noise level, higher mass galaxies display a more complex outer morphology induced by their clustered environment. We conclude that during Cosmic Noon, these morphological statistics are of limited value in identifying galaxy mergers.
We investigate the structure of galaxies formed in a suite of high-resolution cosmological simulations. Consistent with observations of high-redshift galaxies, our simulated galaxies show irregular, prolate shapes with thick stellar disks, which are
(Abridged) We present an investigation of kinematical imprints of AGN feedback on the Warm Ionized gas Medium (WIM) of massive early-type galaxies (ETGs). To this end, we take a two-fold approach that involves a comparative analysis of Halpha velocit
The new generation of deep photometric surveys requires unprecedentedly precise shape and photometry measurements of billions of galaxies to achieve their main science goals. At such depths, one major limiting factor is the blending of galaxies due t
We study outflows driven by Active Galactic Nuclei (AGNs) using high- resolution simulations of idealized z=2 isolated disk galaxies. Episodic accretion events lead to outflows with velocities >1000 km/s and mass outflow rates up to the star formatio
We present deep high resolution (0.03, 200pc) ALMA Band 7 observations covering the dust continuum and [CII] $lambda157.7mu$m emission in four $zsim4.4-4.8$ sub-millimeter galaxies (SMGs) selected from the ALESS and AS2UDS surveys. The data show that