ﻻ يوجد ملخص باللغة العربية
We experimentally investigate the dynamic instability of Bose-Einstein condensates in an optical ring resonator that is asymmetrically pumped in both directions. We find that, beyond a critical resonator-pump detuning, the system becomes stable regardless of the pump strength. Phase diagrams and quenching curves are presented and described by numerical simulations. We discuss a physical explanation based on a geometric interpretation of the underlying nonlinear equations of motion.
We present a novel approach for the optical manipulation of neutral atoms in annular light structures produced by the phenomenon of conical refraction occurring in biaxial optical crystals. For a beam focused to a plane behind the crystal, the focal
We experimentally investigate the dynamical instability of a Bose Einstein condensate in an optical ring resonator for various cavity detuning and pump powers. The resulting phase diagram is asymmetric with respect to the cavity detuning and can be d
Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Due to their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended
We experimentally and theoretically study phase coherence in two-component Bose-Einstein condensates of $^{87}{rm Rb}$ atoms on an atom chip. Using Ramsey interferometry we measure the temporal decay of coherence between the $|F=1,m_{F}=-1rangle$ and
We investigate the dynamics of a Bose-Einstein condensate interacting with two non-interfering and counterpropagating modes of a ring resonator. Superfluid, supersolid and dynamic phases are identified experimentally and theoretically. The supersolid