ﻻ يوجد ملخص باللغة العربية
For many 2D materials, optical and Raman spectra are richly structured, and convey information on a range of parameters including nanosheet size and defect content. By contrast, the equivalent spectra for h-BN are relatively simple, with both the absorption and Raman spectra consisting of a single feature each, disclosing relatively little information. Here, the ability to size-select liquid-exfoliated h-BN nanosheets has allowed us to comprehensively study the dependence of h-BN optical spectra on nanosheet dimensions. We find the optical extinction coefficient spectrum to vary systematically with nanosheet lateral size due to the presence of light scattering. Conversely, once light scattering has been decoupled to give the optical absorbance spectra, we find the size dependence to be mostly removed save for a weak but well-defined variation in energy of peak absorbance with nanosheet thickness. This finding is corroborated by our ab initio GW and Bethe-Salpeter equation calculations, which include electron correlations and quasiparticle self-consistency (QSGW). In addition, while we find the position of the sole h-BN Raman line to be invariant with nanosheet dimensions, the linewidth appears to vary weakly with nanosheet thickness. These size-dependent spectroscopic properties can be used as metrics to estimate nanosheet thickness from spectroscopic data.
Liquid phase exfoliation is a commonly used method to produce 2D nanosheets from a range of layered crystals. However, such nanosheets display broad size and thickness distributions and correlations between area and thickness, issues that limit nanos
Liquid-phase-exfoliation is a technique capable of producing large quantities of two-dimensional material in suspension. Despite many efforts in the optimization of the exfoliation process itself not much has been done towards the integration of liqu
The application of the chiral decomposition procedure to hybrid graphene h-BN systems revealed rules for the partition of the system into effective subsystems being bilayers plus monolayer in case the number of layers is odd. Three types of subsystem
Transition metal dichalcogenides hold promise for applications in novel optoelectronic devices. There is therefore a need for materials that can be obtained in large quantities and with well understood optical properties. In this report, we present a
High mobility single and few-layer graphene sheets are in many ways attractive as nanoelectronic circuit hosts but lack energy gaps, which are essential to the operation of field-effect transistors. One of the methods used to create gaps in the spect