ﻻ يوجد ملخص باللغة العربية
Crater counting on the Moon and other bodies is crucial to constrain the dynamical history of the Solar System. This has traditionally been done by visual inspection of images, thus limiting the scope, efficiency, and/or accuracy of retrieval. In this paper we demonstrate the viability of using convolutional neural networks (CNNs) to determine the positions and sizes of craters from Lunar digital elevation maps (DEMs). We recover 92% of craters from the human-generated test set and almost double the total number of crater detections. Of these new craters, 15% are smaller in diameter than the minimum crater size in the ground-truth dataset. Our median fractional longitude, latitude and radius errors are 11% or less, representing good agreement with the human-generated datasets. From a manual inspection of 361 new craters we estimate the false positive rate of new craters to be 11%. Moreover, our Moon-trained CNN performs well when tested on DEM images of Mercury, detecting a large fraction of craters in each map. Our results suggest that deep learning will be a useful tool for rapidly and automatically extracting craters on various Solar System bodies. We make our code and data publicly available at https://github.com/silburt/DeepMoon.git and https://doi.org/10.5281/zenodo.1133969 .
Impact craters, as lunar fossils, are the most dominant lunar surface features and occupy most of the Moons surface. Their formation and evolution record the history of the Solar System. Sixty years of triumphs in the lunar exploration projects accum
The identification of impact craters on planetary surfaces provides important information about their geological history. Most studies have relied on individual analysts who map and identify craters and interpret crater statistics. However, little wo
Crater ellipticity determination is a complex and time consuming task that so far has evaded successful automation. We train a state of the art computer vision algorithm to identify craters in Lunar digital elevation maps and retrieve their sizes and
The NASA Dawn mission has extensively examined the surface of asteroid Vesta, the second most massive body in the main belt. The high quality of the gathered data provides us with an unique opportunity to determine the surface and internal properties
Mutual event observations between the two components of 90 Antiope were carried out in 2007-2008. The pole position was refined to lambda0 = 199.5+/-0.5 eg and beta0 = 39.8+/-5 deg in J2000 ecliptic coordinates, leaving intact the physical solution f