ترغب بنشر مسار تعليمي؟ اضغط هنا

The Importance of Short- and Long-Range Exchange on Various Excited State Properties of DNA Monomers, Stacked Complexes, and Watson-Crick Pairs

73   0   0.0 ( 0 )
 نشر من قبل Bryan Wong
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed analysis of several time-dependent DFT (TD-DFT) methods, including conventional hybrid functionals and two types of non-empirically tuned range-separated functionals, for predicting a diverse set of electronic excitations in DNA nucleobase monomers and dimers. This large and extensive set of excitations comprises a total of 50 different transitions (for each tested DFT functional) that includes several n $rightarrow$ {pi} and {pi} $rightarrow$ {pi}* valence excitations, long-range charge-transfer excitations, and extended Rydberg transitions (complete with benchmark calculations from high-level EOM-CCSD(T) methods). The presence of localized valence excitations as well as extreme long-range charge-transfer excitations in these systems poses a serious challenge for TD-DFT methods that allows us to assess the importance of both short- and long-range exchange contributions for simultaneously predicting all of these various transitions. In particular, we find that functionals that do not have both short- and full long-range exchange components are unable to predict the different types of nucleobase excitations with the same accuracy. Most importantly, the current study highlights the importance of both short-range exchange and a non-empirically tuned contribution of long-range exchange for accurately predicting the diverse excitations in these challenging nucleobase systems.



قيم البحث

اقرأ أيضاً

We have studied complexes of gold atoms and imidazole (C$_3$N$_2$H$_4$, abbreviated Im) produced in helium nanodroplets. Following the ionization of the doped droplets we detect a broad range of different Au$_m$Im$_n^+$ complexes, however we find tha t for specific values of $m$ certain $n$ are magic and thus particularly abundant. Our density functional theory calculations indicate that these abundant clusters sizes are partially the result of particularly stable complexes, e.g. AuIm$_2^+$, and partially due to a transition in fragmentation patterns from the loss of neutral imidazole molecules for large systems to the loss of neutral gold atoms for smaller systems.
The BOUND program calculates the bound states of a complex formed from two interacting particles using coupled-channel methods. It is particularly suitable for the bound states of atom-molecule and molecule-molecule Van der Waals complexes and for th e near-threshold bound states that are important in ultracold physics. It uses a basis set for all degrees of freedom except $R$, the separation of the centres of mass of the two particles. The Schrodinger equation is expressed as a set of coupled equations in $R$. Solutions of the coupled equations are propagated outwards from the classically forbidden region at short range and inwards from the classically forbidden region at long range, and matched at a point in the central region. Built-in coupling cases include atom + rigid linear molecule, atom + vibrating diatom, atom + rigid symmetric top, atom + asymmetric or spherical top, rigid diatom + rigid diatom, and rigid diatom + asymmetric top. Both programs provide an interface for plug-in routines to specify coupling cases (Hamiltonians and basis sets) that are not built in. With appropriate plug-in routines, BOUND can take account of the effects of external electric, magnetic and electromagnetic fields, locating bound-state energies at fixed values of the fields. The related program FIELD uses the same plug-in routines and locates values of the fields where bound states exist at a specified energy. As a special case, it can locate values of the external field where bound states cross scattering thresholds and produce zero-energy Feshbach resonances. Plug-in routines are supplied to handle the bound states of a pair of alkali-metal atoms with hyperfine structure in an applied magnetic field.
383 - A. Duspayev , X. Han , M.A. Viray 2021
We propose a novel type of Rydberg dimer, consisting of a Rydberg-state atom bound to a distant positive ion. The molecule is formed through long-range electric-multipole interaction between the Rydberg atom and the point-like ion. We present potenti al energy curves (PECs) that are asymptotically connected with Rydberg $nP$- or $nD$-states of rubidium or cesium. The PECs exhibit deep, long-range wells which support many vibrational states of Rydberg-atom-ion molecules (RAIMs). We consider photo-association of RAIMs in both the weak and the strong optical-coupling regimes between initial and Rydberg states of the neutral atom. Experimental considerations for the realization of RAIMs are discussed.
A strong inhomogeneous static electric field is used to spatially disperse a rotationally cold supersonic beam of 2,6-difluoroiodobenzene molecules according to their rotational quantum state. The molecules in the lowest lying rotational states are s elected and used as targets for 3-dimensional alignment and orientation. The alignment is induced in the adiabatic regime with an elliptically polarized, intense laser pulse and the orientation is induced by the combined action of the laser pulse and a weak static electric field. We show that the degree of 3-dimensional alignment and orientation is strongly enhanced when rotationally state-selected molecules, rather than molecules in the original molecular beam, are used as targets.
A strong inhomogeneous static electric field is used to spatially disperse a supersonic beam of polar molecules, according to their quantum state. We show that the molecules residing in the lowest-lying rotational states can be selected and used as t argets for further experiments. As an illustration, we demonstrate an unprecedented degree of laser-induced 1D alignment $(<cos^2theta_{2D}>=0.97)$ and strong orientation of state-selected iodobenzene molecules. This method should enable experiments on pure samples of polar molecules in their rotational ground state, offering new opportunities in molecular science.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا