ﻻ يوجد ملخص باللغة العربية
We study the Cauchy data spaces of the strongly Callias-type operators using maximal domain on manifolds with non-compact boundary, with the aim of understanding the Atiyah-Patodi-Singer index and elliptic boundary value problems.
We study the index of the APS boundary value problem for a strongly Callias-type operator D on a complete Riemannian manifold $M$. We show that this index is equal to an index on a simpler manifold whose boundary is a disjoint union of two complete m
We propose a non-perturbative formulation of the Atiyah-Patodi-Singer(APS) index in lattice gauge theory, in which the index is given by the $eta$ invariant of the domain-wall Dirac operator. Our definition of the index is always an integer with a fi
We introduce a mathematician-friendly formulation of the physicist-friendly derivation of the Atiyah-Patodi-Singer index of our previous paper. Our viewpoint sheds some new light on the interplay among the Atiyah-Patodi-Singer boundary condition, domain-wall fermions, and edge modes.
Let $Gamma$ be a finitely generated discrete group satisfying the rapid decay condition. We give a new proof of the higher Atiyah-Patodi-Singer theorem on a Galois $Gamma$-coverings, thus providing an explicit formula for the higher index associated
We compute the index of a Callias-type operator with APS boundary condition on a manifold with compact boundary in terms of combination of indexes of induced operators on a compact hypersurface. Our result generalizes the classical Callias-type index theorem to manifolds with compact boundary.