ﻻ يوجد ملخص باللغة العربية
State-of-the-art methods for calculating neutral excitation energies are typically demanding and limited to single electron-hole pairs and their composite plasmons. Here we introduce excitonic density-functional theory (XDFT) a computationally light, generally applicable, first-principles technique for calculating neutral excitations based on generalized constrained DFT. In order to simulate an M-particle excited state of an N-electron system, XDFT automatically optimizes a constraining potential to confine N-M electrons within the ground-state Kohn-Sham valence subspace. We demonstrate the efficacy of XDFT by calculating the lowest single-particle singlet and triplet excitation energies of the well-known Thiel molecular test set, with results which are in excellent agreement with time-dependent DFT. Furthermore, going beyond the capability of adiabatic time-dependent DFT, we show that XDFT can successfully capture double excitations. Overall our method makes optical gaps, excition bindings and oscillator strengths readily accessible at a computational cost comparable to that of standard DFT. As such, XDFT appears as an ideal candidate to work within high-throughput discovery frameworks and within linear-scaling methods for large systems.
Semi-local approximations to the density functional for the exchange-correlation energy of a many-electron system necessarily fail for lobed one-electron densities, including not only the familiar stretched densities but also the less familiar but cl
MOLSCAT is a general-purpose package for performing non-reactive quantum scattering calculations for atomic and molecular collisions using coupled-channel methods. Simple atom-molecule and molecule-molecule collision types are coded internally and ad
In a recent communication, Weber and co-workers presented a surprising study on charge-localization effects in the N,N-dimethylpiperazine (DMP+) diamine cation to provide a stringent test of density functional theory (DFT) methods. Within their study
The recent advent of chirped-pulse FTMW technology has created a plethora of pure rotational spectra for molecules for which no vibrational information is known. The growing number of such spectra demands a way to build empirical potential energy sur
The method of McCurdy, Baertschy, and Rescigno, J. Phys. B, 37, R137 (2004) is generalized to obtain a straightforward, surprisingly accurate, and scalable numerical representation for calculating the electronic wave functions of molecules. It uses a