The component connectivity is the generalization of connectivity which is an parameter for the reliability evaluation of interconnection networks. The $g$-component connectivity $ckappa_{g}(G)$ of a non-complete connected graph $G$ is the minimum number of vertices whose deletion results in a graph with at least $g$ components. The results in [Component connectivity of the hypercubes, International Journal of Computer Mathematics 89 (2012) 137-145] by Hsu et al. determines the component connectivity of the hypercubes. As an invariant of the hypercube, we determine the $(g+1)$-component connectivity of the folded hypercube $ckappa_{g}(FQ_{n})=g(n+1)-frac{1}{2}g(g+1)+1$ for $1leq g leq n+1, ngeq 8$ in this paper.