ﻻ يوجد ملخص باللغة العربية
1T-TaS$_2$ is a cluster Mott insulator on the triangular lattice with 13 Ta atoms forming a star of David cluster as the unit cell. We derive a two dimensional XXZ spin-1/2 model with four-spin ring exchange term to describe the effective low energy physics of a monolayer 1T-TaS$_2$, where the effective spin-1/2 degrees of freedom arises from the Kramers degenerate spin-orbital states on each star of David. A large scale density matrix renormalization group simulation is further performed on this effective model and we find a gapless spin liquid phase with spinon Fermi surface at moderate to large strength region of four-spin ring exchange term. All peaks in the static spin structure factor are found to be located on the $2k_F$ surface of half-filled spinon on the triangular lattice. Experiments to detect the spinon Fermi surface phase in 1T-TaS$_2$ are discussed.
1T-TaS$_2$ undergoes successive phase transitions upon cooling and eventually enters an insulating state of mysterious origin. Some consider this state to be a band insulator with interlayer stacking order, yet others attribute it to Mott physics tha
1T-TaS$_2$ is a charge-density-wave (CDW) compound with a Mott-insulating ground state. The metallic state obtained by doping, substitution or pulsed charge injection is characterized by an emergent CDW domain wall network, while single domain walls
Triangular lattice of rare-earth ions with interacting effective spin-$1/2$ local moments is an ideal platform to explore the physics of quantum spin liquids (QSLs) in the presence of strong spin-orbit coupling, crystal electric fields, and geometric
Tuning the electronic properties of a matter is of fundamental interest in scientific research as well as in applications. Recently, the Mott insulator-metal transition has been reported in a pristine layered transition metal dichalcogenides 1T-TaS$_
A quantum spin liquid (QSL) is an exotic state of matter characterized by quantum entanglement and the absence of any broken symmetry. A long-standing open problem, which is a key for fundamental understanding the mysterious QSL states, is how the qu