ﻻ يوجد ملخص باللغة العربية
We used the inverted resistance method to extend the bulk resistivity of SmB$_{6}$ to a regime where the surface conduction overwhelms the bulk. Remarkably, the bulk resistivity shows an intrinsic thermally activated behavior that changes ten orders of magnitude, suggesting that it is an ideal insulator that is immune to disorder. Non-stoichiometrically-grown SmB$_{6}$ samples also show an almost identical thermally activated behavior. At low temperatures, however, these samples show a mysterious high bulk resistivity plateau, which may arise from extended defect conduction in a 3D TI.
The predicted interplay between Kondo physics and non-trivial topology in SmB$_{6}$ has stimulated many experimental reports, some of which are in apparent contradiction. The origin of the dispute may lie on the fragility of the Kondo insulating phas
Samarium hexaboride is a topological Kondo insulator, with metallic surface states manifesting from its insulating band structure. Since the insulating bulk itself is driven by strong correlations, both the bulk and surface host compelling magnetic a
Several technical issues and challenges are identified and investigated for the planar tunneling spectroscopy of the topological Kondo insulator SmB$_6$. Contrasting behaviors of the tunnel junctions prepared in two different ways are analyzed and ex
Samarium hexaboride (SmB$_6$), a well-known Kondo insulator in which the insulating bulk arises from strong electron correlations, has recently attracted great attention owing to increasing evidence for its topological nature, thereby harboring prote
The recent rekindling of interest in the mixed valent Kondo insulator SmB$_{6}$ as candidate for a first correlated topological insulator has resulted in a wealth of new experimental observations. In particular, angle-resolved photoemission experimen