ﻻ يوجد ملخص باللغة العربية
We derive a uniqueness result for non-Cartesian composition of systems in a large class of process theories, with important implications for quantum theory and linguistics. Specifically, we consider theories of wavefunctions valued in commutative involutive semirings -- as modelled by categories of free finite-dimensional modules -- and we prove that the only bilinear compact-closed symmetric monoidal structure is the canonical one (up to linear monoidal equivalence). Our results apply to conventional quantum theory and other toy theories of interest in the literature, such as real quantum theory, relational quantum theory, hyperbolic quantum theory and modal quantum theory. In computational linguistics they imply that linear models for categorical compositional distributional semantics (DisCoCat) -- such as vector spaces, sets and relations, and sets and histograms -- admit an (essentially) unique compatible pregroup grammar.
Motivated by advances in categorical probability, we introduce non-commutative almost everywhere (a.e.) equivalence and disintegrations in the setting of C*-algebras. We show that C*-algebras (resp. W*-algebras) and a.e. equivalence classes of 2-posi
The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohrs idea that the empirical content of quantum physics is accessible only through
Topos quantum mechanics, developed by Isham et. al., creates a topos of presheaves over the poset V(N) of abelian von Neumann subalgebras of the von Neumann algebra N of bounded operators associated to a physical system, and established several resul
We interpret ontological models for finite-dimensional quantum theory as functors from the category of finite-dimensional Hilbert spaces and bounded linear maps to the category of measurable spaces and Markov kernels. This uniformises several earlier
We prove that for any $mathbb{P}^n$-functor all the convolutions (double cones) of the three-term complex $FHR xrightarrow{psi} FR xrightarrow{tr} Id$ defining its $mathbb{P}$-twist are isomorphic. We also introduce a new notion of a non-split $mathbb{P}^n$-functor.