ترغب بنشر مسار تعليمي؟ اضغط هنا

Accelerator performance analysis of the Fermilab Muon Campus

81   0   0.0 ( 0 )
 نشر من قبل Stratakis, Diktys
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fermilab is dedicated to hosting world-class experiments in search of new physics that will operate in the coming years. The Muon g-2 Experiment is one such experiment that will determine with unprecedented precision the muon anomalous magnetic moment, which offers an important test of the Standard Model. We describe in this study the accelerator facility that will deliver a muon beam to this experiment. We first present the lattice design that allows for efficient capture, transport, and delivery of polarized muon beams. We then numerically examine its performance by simulating pion production in the target, muon collection by the downstream beam line optics, as well as transport of muon polarization. We finally establish the conditions required for the safe removal of unwanted secondary particles that minimizes contamination of the final beam.



قيم البحث

اقرأ أيضاً

The Fermilab Muon Campus will host the Muon g-2 experiment - a world class experiment dedicated to the search for signals of new physics. Strict demands are placed on beam diagnostics in order to ensure delivery of high quality beams to the storage r ing with minimal losses. In this study, we briefly describe the available secondary beam diagnostics for the Fermilab Muon Campus. Then, with the aid of numerical simulations we detail their interaction with the secondary beam. Finally, we compare our results against theoretical findings.
91 - R. Ainsworth , J. Dey , J. Eldred 2021
The completion of the PIP-II project and its superconducting linear accelerator will provide up to 1.2 MW of beam power to the LBNF/DUNE facility for neutrino physics. It will also be able to produce high-power beams directly from the linac that can be used for lower-energy particle physics experiments as well, such as directing beam toward the Muon Campus at Fermilab for example. Any further significant upgrade of the beam power to DUNE, however, will be impeded by the limitations of the present Booster synchrotron at the facility. To increase the power to DUNE by a factor of two would require a new accelerator arrangement to feed the Main Injector that does not include the Booster. In what follows, a path toward upgrading the Fermilab accelerator complex to bring the beam power for DUNE to 2.4 MW is presented, using a new rapid-cycling synchrotron plus an energy upgrade to the PIP-II linac. The path includes the ability to instigate a new lower-energy, very high-power beam delivery system for experiments that can address much of the science program presented by the Booster Replacement Science Working Group. It also allows for the future possibility to go beyond 2.4 MW up to roughly 4 MW from the Main Injector.
128 - D. Stratakis 2017
In the next decade the Fermilab Muon Campus will host two world class experiments dedicated to the search for signals of new physics. The Muon g-2 experiment will determine with unprecedented precision the anomalous magnetic moment of the muon. The M u2e experiment will improve by four orders of magnitude the sensitivity on the search for the as-yet unobserved Charged Lepton Flavor Violation process of a neutrinoless conversion of a muon to an electron. Maintaining and preserving a high density of particles in phase-space is an important requirement for both experiments. This paper presents a new experimental method for mapping the transverse phase space of a particle beam based on tomographic principles. We simulate our technique using a GEANT4 based tracking code, to ascertain accuracy of the reconstruction. Then we apply the technique to a series of proof-of-principle simulation tests to study injection and transport of muon beams for the Fermilab Muon Campus.
111 - N. Eddy , B. Fellenz , P. Prieto 2012
The first cryomodule for the beam test facility at the Fermilab New-Muon-Lab building is currently under RF commissioning. Among other diagnostics systems, the transverse position of the helium gas return pipe with the connected 1.3 GHz SRF accelerat ing cavities is measured along the ~15 m long module using a stretched-wire position monitoring system. An overview of the wire position monitor system technology is given, along with preliminary results taken at the initial module cool down, and during further testing. As the measurement system offers a high resolution, we also discuss options for use as a vibration detector.
Starting this summer, Fermilab will host a key experiment dedicated to the search for signals of new physics: The Fermilab Muon g-2 Experiment. Its aim is to precisely measure the anomalous magnetic moment of the muon. In full operation, in order to avoid contamination, the newly born secondary beam is injected into a 505 m long Delivery Ring (DR) wherein it makes several revolutions before being sent to the experiment. Part of the commissioning scenario will execute a running mode wherein the passage from the DR will be skipped. With the aid of numerical simulations, we provide estimates of the expected performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا