ﻻ يوجد ملخص باللغة العربية
Extending work of M. Zarzar, we evaluate the potential of Goppa-type evaluation codes constructed from linear systems on projective algebraic surfaces with small Picard number. Putting this condition on the Picard number provides some control over the numbers of irreducible components of curves on the surface and hence over the minimum distance of the codes. We find that such surfaces do not automatically produce good codes; the sectional genus of the surface also has a major influence. Using that additional invariant, we derive bounds on the minimum distance under the assumption that the hyperplane section class generates the Neron-Severi group. We also give several examples of codes from such surfaces with minimum distance better than the best known bounds in Grassls tables.
Locally recoverable codes were introduced by Gopalan et al. in 2012, and in the same year Prakash et al. introduced the concept of codes with locality, which are a type of locally recoverable codes. In this work we introduce a new family of codes wit
We study Algebraic Geometry codes producing quantum error-correcting codes by the CSS construction. We pay particular attention to the family of Castle codes. We show that many of the examples known in the literature in fact belong to this family of
In this work we present a class of locally recoverable codes, i.e. codes where an erasure at a position $P$ of a codeword may be recovered from the knowledge of the entries in the positions of a recovery set $R_P$. The codes in the class that we defi
We use a theorem of Chow (1949) on line-preserving bijections of Grassmannians to determine the automorphism group of Grassmann codes. Further, we analyze the automorphisms of the big cell of a Grassmannian and then use it to settle an open question
We present an introduction to the theory of algebraic geometry codes. Starting from evaluation codes and codes from order and weight functions, special attention is given to one-point codes and, in particular, to the family of Castle codes.