ﻻ يوجد ملخص باللغة العربية
Large-scale solar eruptions have been extensively explored over many years. However, the properties of small-scale events with associated shocks have been rarely investigated. We present the analyses of a small-scale short-duration event originating from a small region. The impulsive phase of the M1.9-class flare lasted only for four minutes. The kinematic evolution of the CME hot channel reveals some exceptional characteristics including a very short duration of the main acceleration phase ($<$ 2 minutes), a rather high maximal acceleration rate ($sim$50 km s$^{-2}$) and peak velocity ($sim$1800 km s$^{-1}$). The fast and impulsive kinematics subsequently results in a piston-driven shock related to a metric type II radio burst with a high starting frequency of $sim$320 MHz of the fundamental band. The type II source is formed at a low height of below $1.1~mathrm{R_{odot}}$ less than $sim2$ minutes after the onset of the main acceleration phase. Through the band split of the type II burst, the shock compression ratio decreases from 2.2 to 1.3, and the magnetic field strength of the shock upstream region decreases from 13 to 0.5 Gauss at heights of 1.1 to 2.3 $~mathrm{R_{odot}}$. We find that the CME ($sim4times10^{30},mathrm{erg}$) and flare ($sim1.6times10^{30},mathrm{erg}$) consume similar amount of magnetic energy. The same conclusion for large-scale eruptions implies that small- and large-scale events possibly share the similar relationship between CMEs and flares. The kinematic particularities of this event are possibly related to the small footpoint-separation distance of the associated magnetic flux rope, as predicted by the Erupting Flux Rope model.
We present the observation of a major solar eruption that is associated with fast sunspot rotation. The event includes a sigmoidal filament eruption, a coronal mass ejection, and a GOES X2.1 flare from NOAA active region 11283. The filament and some
A filament, a dense cool plasma supported by the magnetic fields in the solar corona, often becomes unstable and erupts. It is empirically known that the filament often demonstrates some activations such as a turbulent motion prior to eruption. In ou
We present a study on the evolution of the small scale velocity field in a solar filament as it approaches to the eruption. The observation was carried out by the Solar Dynamics Doppler Imager (SDDI) that was newly installed on the Solar Magnetic Act
Solar eruptions are spectacular magnetic explosions in the Suns corona, and how they are initiated remains unclear. Prevailing theories often rely on special magnetic topologies that may not generally exist in the pre-eruption source region of corona
We report a study of a compound solar eruption that was associated with two consecutively erupting magnetic structures and correspondingly two distinct peaks, during impulsive phase, of an M-class flare (M8.5). Simultaneous multi-viewpoint observatio