ﻻ يوجد ملخص باللغة العربية
This paper studies the model of the probe-drogue aerial refueling system under aerodynamic disturbances, and proposes a docking control method based on terminal iterative learning control to compensate for the docking errors caused by aerodynamic disturbances. The designed controller works as an additional unit for the trajectory generation function of the original autopilot system. Simulations based on our previously published simulation environment show that the proposed control method has a fast learning speed to achieve a successful docking control under aerodynamic disturbances including the bow wave effect.
Optimal and Learning Control for Autonomous Robots has been taught in the Robotics, Systems and Controls Masters at ETH Zurich with the aim to teach optimal control and reinforcement learning for closed loop control problems from a unified point of v
Enforcing safety on precise trajectory tracking is critical for aerial robotics subject to wind disturbances. In this paper, we present a learning-based safety-preserving cascaded quadratic programming control (SPQC) for safe trajectory tracking unde
In this paper, a method is presented for lowering the energy consumption and/or increasing the speed of a standard manipulator spray painting a surface. The approach is based on the observation that a small angle between the spray direction and the s
Model predictive control (MPC) is an effective method for controlling robotic systems, particularly autonomous aerial vehicles such as quadcopters. However, application of MPC can be computationally demanding, and typically requires estimating the st
This paper presents a stochastic, model predictive control (MPC) algorithm that leverages short-term probabilistic forecasts for dispatching and rebalancing Autonomous Mobility-on-Demand systems (AMoD, i.e. fleets of self-driving vehicles). We first