ترغب بنشر مسار تعليمي؟ اضغط هنا

Davydov-Type Excitonic Effects on the Absorption Spectra of Parallel-Stacked and Herringbone Aggregates of Pentacene: Time-Dependent Density-Functional Theory and Time-Dependent Density-Functional Tight Binding

77   0   0.0 ( 0 )
 نشر من قبل Ala Aldin Darghouth
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Exciton formation leads to J-bands in solid pentacene. Describing these exciton bands represents a challenge for both time-dependent (TD) density-functional theory (DFT) and for its semiempirical analogue, namely for TD density-functional tight binding (DFTB) for three reasons (i) solid pentacene and pentacene aggregates are bound only by van der Waals forces which are notoriously difficult to describe with DFT and DFTB, (ii) the proper description of the long-range coupling between molecules, needed to describe Davydov splitting, is not easy to include in TD-DFT with traditional functionals and in TD-DFTB, and (iii) mixing may occur between local and charge transfer excitons, which may, in turn, require special functionals. We assess how far TD-DFT and TD-DFTB have progressed towards a correct description of this type of exciton by including both a dispersion correction for the ground state and a range-separated hybrid functional for the excited state. Analytic results for parallel-stacked ethylene are derived which go beyond Kashas exciton model in that we are able to make a clear distinction between charge transfer and energy transfer excitons. This is further confirmed when it is shown that range-separated hybrids have a markedly greater effect on charge-transfer excitons than on energy-transfer excitons in the case of parallel-stacked pentacenes. TD-DFT calculations with the CAM-B3LYP functional and TD-lc-DFT calculations lead to negligeable excitonic corrections for the herringbone crystal structure, possibly because of an overcorrection of charge-transfer effects. In this case, TD-DFT calculations with the B3LYP functional or TD-DFTB calculations parameterized to B3LYP give the best results for excitonic corrections for the herringbone crystal structure as judged from comparison with experimental spectra and with Bethe-Salpeter equation calculations from the literature.



قيم البحث

اقرأ أيضاً

The time-dependent density functional based tight-binding (TD-DFTB) approach is generalized to account for fractional occupations. In addition, an on-site correction leads to marked qualitative and quantitative improvements over the original method. Especially, the known failure of TD-DFTB for the description of sigma -> pi* and n -> pi* excitations is overcome. Benchmark calculations on a large set of organic molecules also indicate a better description of triplet states. The accuracy of the revised TD-DFTB method is found to be similar to first principles TD-DFT calculations at a highly reduced computational cost. As a side issue, we also discuss the generalization of the TD-DFTB method to spin-polarized systems. In contrast to an earlier study [Trani et al., JCTC 7 3304 (2011)], we obtain a formalism that is fully consistent with the use of local exchange-correlation functionals in the ground state DFTB method.
Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BigDFT and results are compared against those obtained with the all-electron Gaussian-type orbi tal program deMon2k for the calculation of electronic absorption spectra of N2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BigDFT than for deMon2k. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BigDFT, while all virtual orbitals are included in TD-DFT calculations in deMon2k. As a reality check, we report the x-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1,2-a]pyridin-3-amine.
Real-time time-dependent density functional theory (rt-TDDFT) with hybrid exchange-correlation functional has wide-ranging applications in chemistry and material science simulations. However, it can be thousands of times more expensive than a convent ional ground state DFT simulation, hence is limited to small systems. In this paper, we accelerate hybrid functional rt-TDDFT calculations using the parallel transport gauge formalism, and the GPU implementation on Summit. Our implementation can efficiently scale to 786 GPUs for a large system with 1536 silicon atoms, and the wall clock time is only 1.5 hours per femtosecond. This unprecedented speed enables the simulation of large systems with more than 1000 atoms using rt-TDDFT and hybrid functional.
Real-time time-dependent density functional theory (RT-TDDFT) is known to be hindered by the very small time step (attosecond or smaller) needed in the numerical simulation due to the fast oscillation of electron wavefunctions, which significantly li mits its range of applicability for the study of ultrafast dynamics. In this paper, we demonstrate that such oscillation can be considerably reduced by optimizing the gauge choice using the parallel transport formalism. RT-TDDFT calculations can thus be significantly accelerated using a combination of the parallel transport gauge and implicit integrators, and the resulting scheme can be used to accelerate any electronic structure software that uses a Schrodinger representation. Using absorption spectrum, ultrashort laser pulse, and Ehrenfest dynamics calculations for example, we show that the new method can utilize a time step that is on the order of $10sim 100$ attoseconds in a planewave basis set, and is no less than $5sim 10$ times faster when compared to the standard explicit 4th order Runge-Kutta time integrator. Thanks to the significant increase of the size of the time step, we also demonstrate that the new method is more than 10 times faster in terms of the wall clock time when compared to the standard explicit 4th order Runge-Kutta time integrator for silicon systems ranging from 32 to 1024 atoms
First-order nonadiabatic coupling matrix elements (fo-NACMEs) are the basic quantities in theoretical descriptions of electronically nonadiabatic processes that are ubiquitous in molecular physics and chemistry. Given the large size of systems of che mical interests, time-dependent density functional theory (TDDFT) is usually the first choice. However, the lack of wave functions in TDDFT renders the formulation of NAC-TDDFT for fo-NACMEs conceptually difficult. The present account aims to analyze the available variants of NAC-TDDFT in a critical but concise manner and meanwhile point out the proper ways for implementation. It can be concluded, from both theoretical and numerical points of view, that the equation of motion-based variant of NAC-TDDFT is the right choice. Possible future developments of this variant are also highlighted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا