ﻻ يوجد ملخص باللغة العربية
In this work we describe an experimental setup for spatially-resolved pump-probe experiment with integrated wide-field magneto-optical (MO) microscope. The MO microscope can be used to study ferromagnetic materials with both perpendicular-to-plane and in-plane magnetic anisotropy via polar Kerr and Voigt effects, respectively. The functionality of the Voigt effect-based microscope was tested using an in-plane magnetized ferromagnetic semiconductor (Ga,Mn)As. It was revealed that the presence of mechanical defects in the (Ga,Mn)As epilayer alters significantly the magnetic anisotropy in their proximity. The importance of MO experiments with simultaneous temporal and spatial resolutions was demonstrated using (Ga,Mn)As sample attached to a piezoelectric actuator, which produces a voltage-controlled strain. We observed a considerably different behavior in different parts of the sample that enabled us to identify sample parts where the epilayer magnetic anisotropy was significantly modified by a presence of the piezostressor and where it was not. Finally, we discuss the possible applicability of our experimental setup for the research of compensated antiferromagnets, where only MO effects even in magnetic moments are present.
Recent demonstrations of electrical detection and manipulation of antiferromagnets (AFMs) have opened new opportunities towards robust and ultrafast spintronics devices. However, it is difficult to establish the connection between the spin-transport
We report on a quantitative experimental determination of the three-dimensional magnetization vector trajectory in GaMnAs by means of the static and time-resolved pump-and-probe magneto-optical measurements. The experiments are performed in a normal
Experimental advances allow for the inclusion of multiple probes to measure the transport properties of a sample surface. We develop a theory of dual-probe scanning tunnelling microscopy using a Greens Function formalism, and apply it to graphene. Sa
A two-core transducer assembly using a Fe73.5Nb3Cu1Si13.5B9 ribbon to detect a change of magnetic field is proposed and tested for displacement (linear and angular) and current sensor. Two identical inductors, with the ribbon as core, are a part of t
The magneto-optic Voigt effect is observed in a synthetic diamond membrane with a substitutional nitrogen defect concentration in the order of 200 ppm and a nitrogen-vacancy defect sub-ensemble generated through neutron irradiation and annealing. The