ترغب بنشر مسار تعليمي؟ اضغط هنا

On critical $mathrm{L}^p$-differentiability of $mathrm{BD}$-maps

69   0   0.0 ( 0 )
 نشر من قبل Bogdan Raita
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that functions of locally bounded deformation on $mathbb{R}^n$ are $mathrm{L}^{n/(n-1)}$-differentiable almost everywhere. More generally, we show that this critical $mathrm{L}^p$-differentiability result holds for functions of locally bounded $mathbb{A}$-variation, provided that the first order, homogeneous, linear differential operator $mathbb{A}$ has finite dimensional null-space.



قيم البحث

اقرأ أيضاً

We investigated SrFe$mathrm{_2}$(As$mathrm{_{1-x}}$P$mathrm{_x}$)$mathrm{_2}$ single crystals with four different phosphorus concentrations x in the superconducting phase (x = 0.35, 0.46) and in the magnetic phase (x = 0, 0.2). The superconducting sa mples display a V-shaped superconducting gap, which suggests nodal superconductivity. Furthermore we determined the superconducting coherence length by measuring the spatially resolved superconducting density of states (DOS). Using inelastic tunneling spectroscopy we investigated excitations in the samples with four different phosphorus concentrations. Inelastic peaks are related to bosonic modes. Phonon and non-phonon mechanism for the origin of these peaks are discussed.
The transportation $mathrm{L}^p$ distance, denoted $mathrm{TL}^p$, has been proposed as a generalisation of Wasserstein $mathrm{W}^p$ distances motivated by the property that it can be applied directly to colour or multi-channelled images, as well as multivariate time-series without normalisation or mass constraints. These distances, as with $mathrm{W}^p$, are powerful tools in modelling data with spatial or temporal perturbations. However, their computational cost can make them infeasible to apply to even moderate pattern recognition tasks. We propose line
We report comprehensive temperature and doping-dependences of the Raman scattering spectra for $mathrm{BaFe_{2}}(mathrm{As}_{1-x}mathrm{P}_{x}mathrm{)_{2}}$ ($x =$ 0, 0.07, 0.24, 0.32, and 0.38), focusing on the nematic fluctuation and the supercondu cting responses. With increasing $x$, the bare nematic transition temperature estimated from the Raman spectra reaches $T =$ 0 K at the optimal doping, which indicates a quantum critical point (QCP) at this composition. In the superconducting compositions, in addition to the pair breaking peaks observed in the $A_{mathrm{1g}}$ and $B_{mathrm{1g}}$ spectra, another strong $B_{mathrm{1g}}$ peak appears below the superconducting transition temperature which is ascribed to the nematic resonance peak. The observation of this peak indicates significant nematic correlations in the superconducting state near the QCP in this compound.
We report on a precise measurement of double-polarization asymmetries in electron-induced breakup of $^3mathrm{He}$ proceeding to $mathrm{pd}$ and $mathrm{ppn}$ final states, performed in quasi-elastic kinematics at $Q^2 = 0.25,(mathrm{GeV}/c)^2$ for missing momenta up to $250,mathrm{MeV}/c$. These observables represent highly sensitive tools to investigate the electromagnetic and spin structure of $^3mathrm{He}$ and the relative importance of two- and three-body effects involved in the breakup reaction dynamics. The measured asymmetries cannot be satisfactorily reproduced by state-of-the-art calculations of $^3mathrm{He}$ unless their three-body segment is adjusted, indicating that the spin-dependent part of the nuclear interaction governing the three-body breakup process is much smaller than previously thought.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا