ﻻ يوجد ملخص باللغة العربية
It has been suggested that accretion-induced collapse (AIC) is a non-negligible path for the formation of the observed neutron stars (NSs). An ONe white dwarf (WD) that accretes material from a He star may experience AIC process and eventually produce intermediate-mass binary pulsars (IMBPs), named as the ONe WD+He star scenario. Note that previous studies can only account for part of the observed IMBPs with short orbital periods. In this work, we investigate the evolution of about 900 ONe WD+He star binaries to explore the distribution of IMBPs. We found that the ONe WD+He star scenario could form IMBPs including pulsars with 5-340 ms spin periods and 0.75-1.38 Msun WD companions, in which the orbital periods range from 0.04 to 900 d. Compared with the 20 observed IMBPs, this scenario can cover the parameters of 13 sources in the final orbital period-WD mass plane and the Corbet diagram, most of which has short orbital periods. We found that the ONe WD+He star scenario can explain almost all the observed IMBPs with short orbital periods. This work can well match the observed parameters of PSR J1802-2124 (one of the two precisely observed IMBPs), providing a possible evolutional path for its formation. We also speculate that the compact companion of HD 49798 (a hydrogen depleted sdO6 star) may be not a NS based on the present work.
Most subdwarf B (sdB) + Helium white dwarf (He WD) binaries are believed to be formed from a particular channel. In this channel, the He WDs are produced first from red giants (RGs) with degenerate cores via stable mass transfer and sdB stars are pro
We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, evolving either to helium white dwarf (HeWD) or ultra short orbital period systems. We consider X-ray irradiation
In this paper, we present the results of timing observations of PSRs J1949+3106 and J1950+2414, two binary millisecond pulsars discovered in data from the Arecibo ALFA pulsar survey (PALFA). The timing parameters include precise measurements of the p
PSR J1802-2124 is a 12.6-ms pulsar in a 16.8-hour binary orbit with a relatively massive white dwarf (WD) companion. These properties make it a member of the intermediate-mass class of binary pulsar (IMBP) systems. We have been timing this pulsar sin
Many planets are observed in stellar binary systems, and their frequency may be comparable to that of planetary systems around single stars. Binary stellar evolution in such systems influences the dynamical evolution of the resident planets. Here we