ترغب بنشر مسار تعليمي؟ اضغط هنا

A perturbation approach for Paneitz energy on standard three sphere

64   0   0.0 ( 0 )
 نشر من قبل Fengbo Hang
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present another proof of the sharp inequality for Paneitz operator on the standard three sphere, in the spirit of subcritical approximation for the classical Yamabe problem. To solve the perturbed problem, we use a symmetrization process which only works for extremal functions. This gives a new example of symmetrization for higher order variational problems.



قيم البحث

اقرأ أيضاً

126 - XiuXiong Chen , Meijun Zhu 2007
In this paper we shall give an analytic proof of the fact that the Liouville energy on a topological two sphere is bounded from below. Our proof does not rely on the uniformization theorem and the Onofri inequality, thus it is essentially needed in t he alternative proof of the uniformization theorem via the Calabi flow. Such an analytic approach also sheds light on how to obtain the boundedness for E_1 energy in the study of general Kahler manifolds.
In this paper we consider a fourth order equation involving the critical Sobolev exponent on a bounded and smooth domain in $R^6$. Using theory of critical points at infinity, we give some topological conditions on a given function defined on a domain to ensure some existence results.
103 - Andras Vasy 2019
We use a Lagrangian perspective to show the limiting absorption principle on Riemannian scattering, i.e. asymptotically conic, spaces, and their generalizations. More precisely we show that, for non-zero spectral parameter, the `on spectrum, as well as the `off-spectrum, spectral family is Fredholm in function spaces which encode the Lagrangian regularity of generalizations of `outgoing spherical waves of scattering theory, and indeed this persists in the `physical half plane.
141 - Siran Li 2020
Let $(mathcal{M},g_0)$ be a compact Riemannian manifold-with-boundary. We present a new proof of the classical Gaffneys inequality for differential forms in boundary value spaces over $mathcal{M}$, via the variational approach `{a} la Kozono--Yanagis awa [$L^r$-variational inequality for vector fields and the Helmholtz--Weyl decomposition in bounded domains, Indiana Univ. Math. J. 58 (2009), 1853--1920] combined with global computations based on the Bochners technique.
We present a new proof of the sphere covering inequality in the spirit of comparison geometry, and as a byproduct we find another sphere covering inequality which can be viewed as the dual of the original one. We also prove sphere covering inequaliti es on surfaces satisfying general isoperimetric inequalities, and discuss their applications to elliptic equations with exponential nonlinearities in dimension two. The approach in this paper extends, improves, and unifies several inequalities about solutions of elliptic equations with exponential nonlinearities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا