ترغب بنشر مسار تعليمي؟ اضغط هنا

Radial velocities of RR Lyrae stars in and around NGC 6441

82   0   0.0 ( 0 )
 نشر من قبل Andrea Kunder
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Detailed elemental abundance patterns of metal-poor ([Fe/H] ~ -1~dex) stars in the Galactic bulge indicate that a number of them are consistent with globular cluster (GC) stars and may be former members of dissolved GCs. This would indicate that a few per cent of the Galactic bulge was built up from destruction and/or evaporation of globular clusters. Here an attempt is made to identify such presumptive stripped stars originating from the massive, inner Galaxy globular cluster NGC~6441 using its rich RR Lyrae variable star (RRL) population. We present radial velocities of forty RRLs centered on the globular cluster NGC~6441. All of the 13 RRLs observed within the cluster tidal radius have velocities consistent with cluster membership, with an average radial velocity of 24 +- 5~km/s and a star-to-star scatter of 11~km/s. This includes two new RRLs that were previously not associated with the cluster. Eight RRLs with radial velocities consistent with cluster membership but up to three time the distance from the tidal radius are also reported. These potential extra-tidal RRLs also have exceptionally long periods, which is a curious characteristic of the NGC~6441 RRL population that hosts RRLs with periods longer than seen anywhere else in the Milky Way. As expected of stripped cluster stars, most are inline with the clusters orbit. Therefore, either the tidal radius of NGC~6441 is underestimated and/or we are seeing dissolving cluster stars stemming from NGC~6441 that are building up the old spheroidal bulge.



قيم البحث

اقرأ أيضاً

We present new radial velocities, improved pulsation periods and reference epoch s of 11 field RR Lyrae ab-type variables: AS Vir, BS Aps, CD Vel, DT Hya, RV Oct, TY Gru, UV Oct, V1645 Sgr, WY Ant, XZ Aps and Z Mic. This study is based on high resolu tion spectra obtained with the echelle spectro graph of the 2.5-m du Pont telescope at Las Campanas Observatory. We obtained ~200 spectra per star (i.e, total of ~2300 spectra) distributed more or less uniformly throughout their pulsation cycles. Radial velocity curves and photometric lightcurves phased to our new ephemerides are presented for all program stars. In a subsequent paper, we will use these spectra to derive stellar atmospheric parameters and chemical compositions throughout the pulsational cycles, based purely on spectroscopic constraints.
Among the tens of thousands of known RR Lyrae stars there are only a handful that show indications of possible binarity. The question why this is the case is still unsolved, and has recently sparked several studies dedicated to the search for additio nal RR Lyraes in binary systems. Such systems are particularly valuable because they might allow to constrain the stellar mass. Most of the recent studies, however, are based on photometry by finding a light time effect in the timings of maximum light. This approach is a very promising and successful one, but it has a major drawback: by itself, it cannot serve as a definite proof of binarity, because other phenomena such as the Blazhko effect or intrinsic period changes could lead to similar results. Spectroscopic radial velocity measurements, on the other hand, can serve as definite proof of binarity. We have therefore started a project to study spectroscopically RR Lyrae stars that are suspected to be binaries. We have obtained radial velocity (RV) curves with the 2.1m telescope at McDonald observatory. From these we derive systemic RVs which we will compare to previous measurements in order to find changes induced by orbital motions. We also construct templates of the RV curves that can facilitate future studies. We also observed the most promising RR Lyrae binary candidate, TU UMa, as no recent spectroscopic measurements were available. We present a densely covered pulsational RV curve, which will be used to test the predictions of the orbit models that are based on the O-C variations.
111 - G. Clementini 2005
Low resolution spectra have been used to measure individual metal abundances of RR Lyrae stars in NGC 6441, a Galactic globular cluster known to have very unusual horizontal branch morphology and periods of the RR Lyrae stars for its high metallicity . We find an average metal abundance of [Fe/H]=-0.69 +/- 0.06 (r.m.s.=0.33 dex) and [Fe/H]=-0.41 +/- 0.06 (r.m.s.=0.36 dex) on Zinn & West and Carretta & Gratton metallicity scales, respectively, consistent with the cluster metal abundance derived by Armandroff & Zinn. Most of the metallicities were extrapolated from calibration relations defined for [Fe/H] < -1; however, they are clearly high and contrast with the rather long periods of the NGC 6441 variables, thus confirming that the cluster does not fit in the general Oosterhoff classification scheme. The r.m.s. scatter of the average is larger than observational errors (0.15-0.16 dex) possibly indicating some spread in metallicity. However, even the metal poor variables, if confirmed to be cluster members, are still more metal rich than those commonly found in the Oosterhoff type II globular clusters.
81 - Z. Prudil , M. Hanke , B. Lemasle 2021
We present a chemo-dynamical study of the Orphan stellar stream using a catalog of RR~Lyrae pulsating variable stars for which photometric, astrometric, and spectroscopic data are available. Employing low-resolution spectra from the Sloan Digital Sky Survey (SDSS), we determined line-of-sight velocities for individual exposures and derived the systemic velocities of the RR~Lyrae stars. In combination with the stars spectroscopic metallicities and textit{Gaia} EDR3 astrometry, we investigated the northern part of the Orphan stream. In our probabilistic approach, we found 20 single mode RR~Lyrae variables likely associated with the Orphan stream based on their positions, proper motions, and distances. The acquired sample permitted us to expand our search to nonvariable stars in the SDSS dataset, utilizing line-of-sight velocities determined by the SDSS. We found 54 additional nonvariable stars linked to the Orphan stream. The metallicity distribution for the identified red giant branch stars and blue horizontal branch stars is, on average, $-2.13pm0.05$ dex and $-1.87pm0.14$ dex, with dispersions of 0.23 and 0.43dex, respectively. The metallicity distribution of the RR~Lyrae variables peaks at $-1.80pm0.06$ dex and a dispersion of 0.25dex. Using the collected stellar sample, we investigated a possible link between the ultra-faint dwarf galaxy Grus II and the Orphan stream. Based on their kinematics, we found that both the stream RR~Lyrae and Grus II are on a prograde orbit with similar orbital properties, although the large uncertainties on the dynamical properties render an unambiguous claim of connection difficult. At the same time, the chemical analysis strongly weakens the connection between both. We argue that Grus II in combination with the Orphan stream would have to exhibit a strong inverse metallicity gradient, which to date has not been detected in any Local Group system.
116 - E. Plachy , L. Molnar , A. Bodi 2018
Thousands of RR Lyrae stars have been observed by the textit{Kepler} space telescope so far. We developed a photometric pipeline tailored to the light variations of these stars, called the Extended Aperture Photometry (EAP). We present the comparison of our photometric solutions for Campaigns 0 through 6 with the other pipelines available, e.g., SAP/PDCSAP, K2P2, EVEREST, and others. We focus on the problems caused by instrumental effects and the detectability of the low-amplitude additional modes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا