ترغب بنشر مسار تعليمي؟ اضغط هنا

SparCML: High-Performance Sparse Communication for Machine Learning

158   0   0.0 ( 0 )
 نشر من قبل Cedric Renggli
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Applying machine learning techniques to the quickly growing data in science and industry requires highly-scalable algorithms. Large datasets are most commonly processed data parallel distributed across many nodes. Each nodes contribution to the overall gradient is summed using a global allreduce. This allreduce is the single communication and thus scalability bottleneck for most machine learning workloads. We observe that frequently, many gradient values are (close to) zero, leading to sparse of sparsifyable communications. To exploit this insight, we analyze, design, and implement a set of communication-efficient protocols for sparse input data, in conjunction with efficient machine learning algorithms which can leverage these primitives. Our communication protocols generalize standard collective operations, by allowing processes to contribute arbitrary sparse input data vectors. Our generic communication library, SparCML, extends MPI to support additional features, such as non-blocking (asynchronous) operations and low-precision data representations. As such, SparCML and its techniques will form the basis of future highly-scalable machine learning frameworks.



قيم البحث

اقرأ أيضاً

Big data applications and analytics are employed in many sectors for a variety of goals: improving customers satisfaction, predicting market behavior or improving processes in public health. These applications consist of complex software stacks that are often run on cloud systems. Predicting execution times is important for estimating the cost of cloud services and for effectively managing the underlying resources at runtime. Machine Learning (ML), providing black box solutions to model the relationship between application performance and system configuration without requiring in-detail knowledge of the system, has become a popular way of predicting the performance of big data applications. We investigate the cost-benefits of using supervised ML models for predicting the performance of applications on Spark, one of todays most widely used frameworks for big data analysis. We compare our approach with textit{Ernest} (an ML-based technique proposed in the literature by the Spark inventors) on a range of scenarios, application workloads, and cloud system configurations. Our experiments show that Ernest can accurately estimate the performance of very regular applications, but it fails when applications exhibit more irregular patterns and/or when extrapolating on bigger data set sizes. Results show that our models match or exceed Ernests performance, sometimes enabling us to reduce the prediction error from 126-187% to only 5-19%.
In the last few years, distributed machine learning has been usually executed over heterogeneous networks such as a local area network within a multi-tenant cluster or a wide area network connecting data centers and edge clusters. In these heterogene ous networks, the link speeds among worker nodes vary significantly, making it challenging for state-of-the-art machine learning approaches to perform efficient training. Both centralized and decentralized training approaches suffer from low-speed links. In this paper, we propose a decentralized approach, namely NetMax, that enables worker nodes to communicate via high-speed links and, thus, significantly speed up the training process. NetMax possesses the following novel features. First, it consists of a novel consensus algorithm that allows worker nodes to train model copies on their local dataset asynchronously and exchange information via peer-to-peer communication to synchronize their local copies, instead of a central master node (i.e., parameter server). Second, each worker node selects one peer randomly with a fine-tuned probability to exchange information per iteration. In particular, peers with high-speed links are selected with high probability. Third, the probabilities of selecting peers are designed to minimize the total convergence time. Moreover, we mathematically prove the convergence of NetMax. We evaluate NetMax on heterogeneous cluster networks and show that it achieves speedups of 3.7X, 3.4X, and 1.9X in comparison with the state-of-the-art decentralized training approaches Prague, Allreduce-SGD, and AD-PSGD, respectively.
Electronic performance predictions of modern nanotransistors require nonequilibrium Greens functions including incoherent scattering on phonons as well as inclusion of random alloy disorder and surface roughness effects. The solution of all these eff ects is numerically extremely expensive and has to be done on the worlds largest supercomputers due to the large memory requirement and the high performance demands on the communication network between the compute nodes. In this work, it is shown that NEMO5 covers all required physical effects and their combination. Furthermore, it is also shown that NEMO5s implementation of the algorithm scales very well up to about 178176CPUs with a sustained performance of about 857 TFLOPS. Therefore, NEMO5 is ready to simulate future nanotransistors.
While many of the architectural details of future exascale-class high performance computer systems are still a matter of intense research, there appears to be a general consensus that they will be strongly heterogeneous, featuring standard as well as accelerated resources. Today, such resources are available as multicore processors, graphics processing units (GPUs), and other accelerators such as the Intel Xeon Phi. Any software infrastructure that claims usefulness for such environments must be able to meet their inherent challenges: massive multi-level parallelism, topology, asynchronicity, and abstraction. The General, Hybrid, and Optimized Sparse Toolkit (GHOST) is a collection of building blocks that targets algorithms dealing with sparse matrix representations on current and future large-scale systems. It implements the MPI+X paradigm, has a pure C interface, and provides hybrid-parallel numerical kernels, intelligent resource management, and truly heterogeneous parallelism for multicore CPUs, Nvidia GPUs, and the Intel Xeon Phi. We describe the details of its design with respect to the challenges posed by modern heterogeneous supercomputers and recent algorithmic developments. Implementation details which are indispensable for achieving high efficiency are pointed out and their necessity is justified by performance measurements or predictions based on performance models. The library code and several applications are available as open source. We also provide instructions on how to make use of GHOST in existing software packages, together with a case study which demonstrates the applicability and performance of GHOST as a component within a larger software stack.
Machine learning algorithms have enabled computers to predict things by learning from previous data. The data storage and processing power are increasing rapidly, thus increasing machine learning and Artificial intelligence applications. Much of the work is done to improve the accuracy of the models built in the past, with little research done to determine the computational costs of machine learning acquisitions. In this paper, I will proceed with this later research work and will make a performance comparison of multi-threaded machine learning clustering algorithms. I will be working on Linear Regression, Random Forest, and K-Nearest Neighbors to determine the performance characteristics of the algorithms as well as the computation costs to the obtained results. I will be benchmarking system hardware performance by running these multi-threaded algorithms to train and test the models on a dataset to note the differences in performance matrices of the algorithms. In the end, I will state the best performing algorithms concerning the performance efficiency of these algorithms on my system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا