ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a novel effective non-rigid object tracking framework based on the spatial-temporal consistent saliency detection. In contrast to most existing trackers that utilize a bounding box to specify the tracked target, the proposed framework can extract accurate regions of the target as tracking outputs. It achieves a better description of the non-rigid objects and reduces the background pollution for the tracking model. Furthermore, our model has several unique features. First, a tailored fully convolutional neural network (TFCN) is developed to model the local saliency prior for a given image region, which not only provides the pixel-wise outputs but also integrates the semantic information. Second, a novel multi-scale multi-region mechanism is proposed to generate local saliency maps that effectively consider visual perceptions with different spatial layouts and scale variations. Subsequently, local saliency maps are fused via a weighted entropy method, resulting in a final discriminative saliency map. Finally, we present a non-rigid object tracking algorithm based on the predicted saliency maps. By utilizing a spatial-temporal consistent saliency map (STCSM), we conduct target-background classification and use a simple fine-tuning scheme for online updating. Extensive experiments demonstrate that the proposed algorithm achieves competitive performance in both saliency detection and visual tracking, especially outperforming other related trackers on the non-rigid object tracking datasets.
Most existing trackers based on deep learning perform tracking in a holistic strategy, which aims to learn deep representations of the whole target for localizing the target. It is arduous for such methods to track targets with various appearance var
We propose D-RISE, a method for generating visual explanations for the predictions of object detectors. Utilizing the proposed similarity metric that accounts for both localization and categorization aspects of object detection allows our method to p
With efficient appearance learning models, Discriminative Correlation Filter (DCF) has been proven to be very successful in recent video object tracking benchmarks and competitions. However, the existing DCF paradigm suffers from two major issues, i.
We propose an improved discriminative model prediction method for robust long-term tracking based on a pre-trained short-term tracker. The baseline pre-trained short-term tracker is SuperDiMP which combines the bounding-box regressor of PrDiMP with t
In multi-object tracking, the tracker maintains in its memory the appearance and motion information for each object in the scene. This memory is utilized for finding matches between tracks and detections and is updated based on the matching result. M